Details

Title

Direct least squares and derivative-free optimisation techniques for determining mine-induced horizontal ground displacement

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2021

Volume

69

Issue

No. 1

Affiliation

Rusek, Janusz : AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland ; Tajduś, Krzysztof : Strata Mechanics Research Institute, Polish Academy of Sciences, Reymonta 27, 30-059 Krakow, Poland

Authors

Keywords

horizontal ground displacement ; mining ; direct least squares ; derivative-free Optimisation ; genetic algorithms ; differential evolution ; particle swarm optimization

Divisions of PAS

Nauki Techniczne

Coverage

e135840

Bibliography

  1.  T. Chmielewski and Z. Zembaty, Podstawy dynamiki budowli, Warsaw: Arkady, 2006 [in Polish].
  2.  J. Rusek, “Influence of the Seismic Intensity of the Area on the Assessment of Dynamic Resistance of Bridge Structures”, in IOP Conf. Ser.: Mater. Sci. Eng. 2017, pp. 245‒252, doi: 10.1088/1757-899X/245/3/032019.
  3.  J. Rusek and W. Kocot, “Proposed Assessment of Dynamic Resistance of the Existing Industrial Portal Frame Building Structures to the Impact of Mining Tremors” in IOP Conf. Ser.: Mater. Sci. Eng. 2017, pp.162‒245, doi: 10.1088/1757-899X/245/3/032020.
  4.  J. Rusek, “A proposal for an assessment method of the dynamic resistance of concrete slab viaducts subjected to impact loads caused by mining tremors”, in JCEEA. 64(1), 469‒486 (2018), doi: 10.7862/rb.2017.43.
  5.  K. Tajduś, “Analysis of Horizontal Displacements Measured over the Mining Operations in Longwall No. 537 at the Girondelle 5 Seam of the Bw Friedrich Heinrich-Rheinland Coal Mine”, Arch. Min. Sci. 61(1), 157‒168 (2016), doi: 10.1515/amsc-2016-0012.
  6.  K. Tajdus, “The nature of mining-induced horizontal displacement of surface on the example of several coal mines”. Arch. Min. Sci. 59(4), 971‒986 (2014), doi: 10.2478/amsc-2014-0067.
  7.  K. Tajduś “Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation”. J. Rock Mech. Geotech. Eng. 7(4), 395‒403 (2015), doi: 10.1016/j.jrmge.2015.03.012.
  8.  Deutsche Montan Technologie GmbH (DMT). BW Prosper Haniel measurements point – Schwarze Heide, 2001 (not published) [in German].
  9.  K. Tajduś, R. Misa, and A. Sroka, “Analysis of the surface horizontal displacement changes due to longwall panel advance”, Int. J. Rock Mech. Min. Sci. 104, 119‒125 (2018), doi: 10.1016/j.ijrmms.2018.02.005.
  10.  Z.L. Szpak, W. Chojnacki, and A. van den Hengel, “Guaranteed Ellipse Fitting with a Confidence Region and an Uncertainty Measure for Centre, Axes, and Orientation”, J. Math. Imaging Vision. 52(2), 173‒199 (2015), doi: 10.1007/s10851-014-0536-x.
  11.  M.A. Kashiha, C. Bahr, S. Ott, C.P.H. Moons, T.A. Niewold, F.O. Ödberg, and D. Berckmans, “Automatic identification of marked pigs in a pen using image pattern recognition”. Comput. Electron. Agric. 93, 111‒120 (2013), doi: 10.1007/978-3-642-38628-2_24.
  12.  L. Li, Y. Wang, X. Liu, Z. Tang, and Z. He, “A fast and robust ellipse detector based on top-down least-square fitting”, in BMVC, 2015, doi: 10.5244/c.29.156.
  13.  A. Xu, Z. Wang, D. Kong, Z. Fu, and Q. Lin, “A new ellipse fitting method of the minimum differential-mode noise in the atom interference gravimeter”, Chin. Phys. B – IOPscience. 27(7), 070203 (2018), doi: 10.1088/1674-1056/27/7/070203.
  14.  K. Kanatani, Y. Sugaya, and Y. Kanazawa, “Ellipse Fitting” in: Guide to 3D Vision Computation. Advances in Computer Vision and Pattern Recognition, pp. 11‒32, Springer, Cham, 2016, doi: 10.1007/978-3-319-48493-8_2.
  15.  R. Halır and J. Flusser, “Numerically stable direct least squares fitting of ellipses” in Proc. 6th International Conference in Central Europe on Computer Graphics and Visualization, vol. 98, pp. 125‒132, WSCG, Citeseer.
  16.  A. Ray and D.C. Srivastava, “Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis”. J. Struct. Geol. 30(12), 1593‒1602 (2008), doi: 10.1016/j.jsg.2008.09.003.
  17.  R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization. An overview”, Swarm Intell. 1(1), 33‒57, (2007), doi: 10.1007/s11721- 007-0002-0.
  18.  F. Ye, “Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high- dimensional data”, PLos one. 12(12), e0188746 2017, doi: 10.1371/journal.pone.0188746.
  19.  A.J. Mantau, A. Bowolaksono, B. Wiweko, and W. Jatmiko, “Detecting ellipses in embryo images using arc detection method with particle swarm for Blastomere-quality measurement system”, JACIII. 20(7), 1170‒1180 (2016), doi: 10.20965/jaciii.2016.p1170.
  20.  M. Szczepanik and T. Burczyński, “Swarm optimization of stiffeners locations in 2-D structures”, Bull. Pol. Ac.: Tech. 60(2), 241‒246 (2012), doi: 10.2478/v10175-012-0032-7.
  21.  J. Lampinen and R. Storn, Differential evolution. New optimization techniques in engineering, pp. 123–66, Springer, 2004.
  22.  L.M. Rios and N.V. Sahinidis, “Derivative-free optimization: A review of algorithms and comparison of software implementations”. J. Global Optim. Springer. 56(3), 1247‒1293 (2013), doi: 10.1007/s10898-012-9951-y.
  23.  J. Rusek, “Application of support vector machine in the analysis of the technical state of development in the LGOM mining area”, Maint. Reliab. vol.19, 54‒61, 2017, doi: 10.17531/ein.2017.1.8.
  24.  J. Rusek, “Creating a model of technical wear of building in mining area, with utilization of regressive SVM approach”. Arch. Min. Sci. 54(3), 455‒466, (2009).
  25.  D. Rainville, F.-A. Fortin, M.-A. Gardner, M. Parizeau, and C. Gagné, “Deap: A python framework for evolutionary algorithms” in GECCO ‘12, pp. 85–92, 2012.
  26.  F.A. Fortin, F.M.D. Rainville, M.A. Gardner, M. Parizeau, and C. Gagné, “DEAP: Evolutionary algorithms made easy”, J. Mach. Learn. Res. 13(1), 2171‒2175 (2012).
  27.  M.M. McKerns, P. Hung, and M.A.G. Aivazis, “Mystic: a simple model-independent inversion framework”, 2009, [Online] Available: http:// dev.danse.us/trac/mystic.
  28.  M.M. McKerns, L. Strand, T. Sullivan, A. Fang, and M.A.G. Aivazis. „Building a framework for predictive science” arXiv preprint arXiv:1202.1056, 2012.
  29.  B. Hammel and N. Sullivan-Molina, “Bdhammel/least-squares-ellipse-fitting: Initial release (Version v1.0)”, Zenodo, doi: 10.5281/ zenodo.2578663.
  30.  A.W. Fitzgibbon, M. Pilu, and R.B. Fisher, “Direct least squares fitting of ellipses”, IEEE Xplore 1, 253‒257 (1996), doi: 10.1109/ ICPR.1996.546029.
  31.  E. Cuevas, D. Zaldivar, M. Pérez-Cisneros, and M. Ramírez-Ortegón, “Circle detection using discrete differential evolution optimization”, Pattern Anal. Appl. Springer. 14, 93‒107 (2011), doi: 10.1007/s10044-010-0183-9.
  32.  E. Cuevas, M. González, D. Zaldívar, and M. Pérez-Cisneros, “Multi-ellipses detection on images inspired by collective animal behavior”, Neural. Comput. Appl. 24, 1019‒1033 (2014), doi: 10.1007/s00521-012-1332-4.
  33.  T. Witkowski, P. Antczak, and A. Antczak, “Multi-objective decision making and search space for the evaluation of production process scheduling”, Bull. Pol. Ac.: Tech. 3(57), 195‒208 (2012), doi: 10.2478/v10175-010-0121-4.
  34.  J.C. Strikwerda, Finite difference schemes and partial differential equations, SIAM, 2004.
  35.  K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II”, IEEE Trans. Evol. Comput. 6(2), 182‒197 (2002), doi: 10.1109/4235.996017.
  36.  R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces”, J. Global Optim. 11(4), 341‒359 (1997).
  37.  K. Price, R.M. Storn, and J.A Lampinen, Differential evolution: a practical approach to global optimization, Springer-Verlag Berlin Heidelberg, 2006.
  38.  M.M. Ali and A. Törn, “Population set-based global optimization algorithms: some modifications and numerical studies”, Comput Oper Res. 31(10), 1703‒1725 (2004), doi: 10.1016/S0305-0548(03)00116-3.
  39.  Y. Fukuyama, Fundamentals of particle swarm optimization techniques. Modern Heuristic Optimization Techniques: Theory and applications to power systems, pp. 71–87, John Wiley & Sons, 2008.
  40.  C. Blum and X. Li,“Swarm Intelligence in Optimization” in Swarm Intell, pp. 43‒85, ed. Blum C. Merkle D. Natural Computing Series: Springer, Berlin, Heidelberg, 2008, doi: 10.1007/978-3-540-74089-6_2.
  41.  R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, in MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci, 1995, pp. 39–43, doi: 10.1109/MHS.1995.494215.
  42.  L.G. de la Fraga, I.V. Silva, and N. Cruz-Cortés, “Euclidean Distance Fit of Conics Using Differential Evolution” in: Evolutionary Image Analysis and Signal Processing, pp. 171‒184, Springer, Berlin, Heidelberg, 2009, doi: 10.1007/978-3-642-01636-3_10.
  43.  C. Robert and G. Casella, Monte Carlo statistical methods, Springer Science and Business Media, 2013.

Date

10.02.21

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.135840

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e135840
×