Details

Title

Fault diagnosis of T-type three-level inverter based on bridge voltages

Journal title

Archives of Electrical Engineering

Affiliation

Chen, Danjiang : College of Information and Intelligence Engineering, Zhejiang Wanli University, China ; Liu, Yutian : College of Information and Intelligence Engineering, Zhejiang Wanli University, China ; Zhang, Shaozhong : College of Information and Intelligence Engineering, Zhejiang Wanli University, China

Authors

Keywords

bridge voltage ; fault diagnosis ; fault signal ; open-circuit fault ; T-type three-level inverter

Divisions of PAS

Nauki Techniczne

Coverage

73-87

Publisher

Polish Academy of Sciences

Bibliography

[1] Karthik A., Loganathan U., A reduced component count five-level inverter topology for high reliability electric drives, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 725–732 (2020).
[2] Jin H., Luo Y., Yan Y., Pan S., Improved carrier phase shift modulation and voltage equalization control strategy in modular multilevel converter, Archives of electrical engineering, vol. 68, no. 4, pp. 803–815 (2019).
[3] Majumder M.G., Yadav A.K., Gopakumar K., Raj R.K., Loganathan U., Franquelo L.G., A 5-level inverter scheme using single DC link with reduced number of floating capacitors and switches for open-end IM drives, IEEE Transactions on Industrial Electronics, vol. 67, no. 2, pp. 960–968 (2020).
[4] Lewicki A., Morawiec M., Structure and the space vector modulation for a medium-voltage powerelectronic- transformer based on two seven-level cascade H-bridge inverters, IET Electric Power Applications, vol. 13, no. 10, pp. 1514–1523 (2019).
[5] Li X., Xing X., Zhang C., Chen A., Qin C., Zhang G., Simultaneous common-mode resonance circulating current and leakage current suppression for transformerless three-level T-ype PV inverter system, IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4457–4467 (2019).
[6] Qin S., Lei Y., Ye Z., Chou D., Pilawa-Podgurski R.C.N., A high-power-density power factor correction front end based on seven-level flying capacitor multilevel converter, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883–1898 (2019).
[7] Kim H., Kwon Y., Chee S., Sul S., Analysis and compensation of inverter nonlinearity for three-level T-type inverters, IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4970–4980 (2017).
[8] Wang B., Li Z., Bai Z., Krein P.T., Ma H., A redundant unit to form T-type three-level inverters tolerant of IGBT open-circuit faults in multiple legs, IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 924–939 (2020).
[9] Wang B., Li Z., Bai Z., Krein P.T., Ma H., Real-time diagnosis of multiple transistor open-circuit faults in a T-type inverter based on finite-state machine model, CPSS Transactions on Power Electronics and Applications, vol. 5, no. 1, pp. 74–85 (2020).
[10] Choi U., Lee K., Blaabjerg F., Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems, IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 495–508 (2014).
[11] He J., Demerdash N.A.O.,Weise N., Katebi R., A fast on-line diagnostic method for open-circuit switch faults in SiC-MOSFET-based T-type multilevel inverters, IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2948–2958 (2017).
[12] Wang K., Tang Y., Zhang C., Open-circuit fault diagnosis and tolerance strategy applied to four-wire T-type converter systems, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5764–5778 (2019).
[13] Wang X., Wang Z., Xu Z., He J., Zhao W., Diagnosis and tolerance of common electrical faults in Ttype three-level inverters fed dual three-phase PMSM drives, IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1753–1769 (2020).
[14] Schweizer M., Kolar J.W., Design and implementation of a highly efficient three-level T-type converter for low-voltage applications, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 899–907 (2013). Vol. 70 (2021) Fault diagnosis of T-type three-level inverter 87
[15] Wang K., Tang Y., Zhang C., Open-circuit fault diagnosis and tolerance strategy applied to four-wire T-type converter systems, IEEE Transactions on Power Electronics, vol. 34, no. 6, pp. 5764–5778 (2019).
[16] Abadi M.B., Mendes A.M.S., Cruz S.M.Â., Method to diagnose open-circuit faults in active power switches and clamp-diodes of three-level neutral-point clamped inverters, IET Electric Power Applications, vol. 10, no. 7, pp. 623–632 (2016).
[17] Zhou D., Yang S., Tang Y., A voltage-based open-circuit fault detection and isolation approach for modular multilevel converters with model-predictive control, IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9866–9874 (2018).
[18] Chen D., LiuY., Zhang S., Open-circuit fault diagnosis method for the T-type inverter based on analysis of the switched bridge voltage, IET Power Electronics, vol. 12, no. 2, pp. 295–302 (2019

Date

2021.03.25

Type

Article

Identifier

DOI: 10.24425/aee.2021.136053
×