Szczegóły

Tytuł artykułu

Research on regional emergency DC power support strategy of VSC-MTDC transmission system

Tytuł czasopisma

Archives of Electrical Engineering

Rocznik

2021

Wolumin

vol. 70

Numer

No 1

Afiliacje

Li, Congshan : School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China ; Sheng, Tingyu : School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China ; Fang, Yan : School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China ; Li, Yikai : School of Electrical and Information Engineering, Zhengzhou University of Light Industry, China

Autorzy

Słowa kluczowe

coordinated control ; dynamic active power support ; emergency DC power support ; VSC-MTDC

Wydział PAN

Nauki Techniczne

Zakres

145-160

Wydawca

Polish Academy of Sciences

Bibliografia

[1] Li X., Zeng Q.,Wang Y., Zhang Y., Control strategies of voltage source converter based direct current transmission system, Gaodianya Jishu/High Voltage Engineering, vol. 42, no. 10, pp. 3025–3037 (2016).
[2] Kontos E., Tsolaridis G., Teodorescu R., Bauer P., Full-bridge MMC DC fault ride-through and STATCOM operation in multi-terminal HVDC grids , Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 65, no. 5, pp. 653–662 (2017).
[3] Huang R., Zhu Z., Chen J., Chen M., Zou C., Xu S., Research and Experimental Validation of Control and Protection Strategy of HVDC Circuit Breaker in Fault Condition Application in Nan’ao Multi- Terminal VSC-HVDC System, Dianwang Jishu/Power System Technology, vol. 42, no. 7, pp. 2339–2345 (2018).
[4] Guo X., Zhou Y., Mei N., Zhao B., Construction and Characteristic Analysis of Zhangbei Flexible DC Grid, Dianwang Jishu/Power System Technology, vol. 42, no. 11, pp. 3698–3707 (2018).
[5] Xu T. et al., Design and Application of Emergency Coordination Control System for Multi-infeedHVDC Receiving-end System Coping with Frequency Stability Problem, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 41, no. 8, pp. 98–104 (2017).
[6] Lin Q., Li X., Hu N., Wang X., Li K., A multi-agent based emergency DC power support strategy, Dianwang Jishu/Power System Technology, vol. 38, no. 5, pp. 1150–1155 (2014).
[7] Yu T., Shen D., Ren Z., Research on emergency power shifting control of multi-circuit HVDC systems from Central China Power Grid to East China Power Grid, Power System Technology, vol. 28, no. 12, pp. 1–4+19 (2004).
[8] Yang W., Xue Y., Jing Y., Chao J., Huang W., Hong C., Yang B., Emergency DC power support to AC power system in the south china power grid, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 27, no. 17, pp. 68–72 (2003).
[9] Weng H., Xu Z., Xu F., Tu Q., Dong H., Research on constraint factor of emergency power support of HVDC systems, Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, vol. 34, no. 10, pp. 1519–1527 (2014).
[10] Li G., Fu G., Wang S., Li J., Emergency power support control for MMC flexible HVDC transmission system during AC fault, Power System Protection and Control, vol. 46, no. 13, pp. 107–112 (2018).
[11] Li Cong, Li Y., Guo J., He P., Research on emergency DC power support coordinated control for hybrid multi-infeed HVDC system, Archives of Electrical Engineering, vol. 69, no. 1, pp. 5–12 (2020).
[12] Zhu R., Li X., Ying D., A frequency stability control strategy for interconnected VSC-MTDC transmission system, Dianwang Jishu/Power System Technology, vol. 38, no. 10, pp. 2729–2734 (2014).
[13] Zhang W., Fang X., The Support for Regional Grid Catastrophe Recovery from Multi-terminal DC Asynchronous Interconnection, Power System and Automation, vol. 39, no. 1, pp. 66–69 (2017).
[14] XuT. et al., Coordinated Control Strategy of Multi-DC Emergency Power Support to Improve Frequency Stability of Power Systems, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 42, no. 22, pp. 69–77+143 (2018).
[15] Rakibuzzaman S., Robin P., Mike B., The Impact of Voltage Regulation of Multiinfeed VSC-HVDC on Power System Stability, IEEE Transactions on Energy Conversion, vol. 33, no. 4, pp. 1614-1627 (2018).
[16] Nadew A.B., Cornelis A.P., Analysis of Faults in Multiterminal HVDC Grid for Definition of Test Requirements of HVDC Circuit Breakers, IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 403–411 (2018).
[17] Fuchs A., Imhof M., Demiray T., Morari M., Stabilization of large power systems using vsc-hvdc and model predictive control, IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 480–488 (2014).
[18] Harnefors L., Johansson N., Zhang L., Berggren B., Interarea oscillation damping using active-power modulation of multiterminal HVDC transmissions, IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 2529–2538 (2014).
19] Tang G., He Z., Pang H., Research, application and development of VSC-HVDC engineering technology, Dianli Xitong Zidonghua/Automation of Electric Power Systems, vol. 37, no. 15, pp. 3–14 (2013).
[20] Naushath M., Athula D., Aniruddha M., Ioni T., Investigation of Fault Ride-Through Capability of Hybrid VSC-LCC Multi-Terminal HVDC Transmission Systems, IEEE Transactions on Power Delivery, vol. 34, no. 1, pp. 241–250 (2019).

Data

2021.03.25

Typ

Article

Identyfikator

DOI: 10.24425/aee.2021.136058 ; ISSN: 1427-4221 ; eISSN: 2300-2506

Źródło

Archives of Electrical Engineering; 2021; vol. 70; No 1; 145-160
×