Tytuł artykułu

The slewing drive system for tower crane with permanent magnet synchronous motor

Tytuł czasopisma

Archives of Electrical Engineering


Knypiński, Łukasz : Poznan University of Technology, Poland ; Krupiński, Jacek : Krupinski Cranes, Poland


Słowa kluczowe

energy conversion efficiency ; permanent magnet synchronous motor ; slewing drive system ; System efficiency ; tower cranes

Wydział PAN

Nauki Techniczne




Polish Academy of Sciences


[1] Gansen A.U., Chokkalingam L.N., Self-start synchronous reluctance motor new rotor designs and its performance characteristic, International Transaction on Electrical Energy Systems, vol. 29, no. 11, pp. 1–22 (2019).
[2] Resa J., Cortes D., Marquez-Rubio J.F., Navarro D., Reduction of induction motor energy consumption via variable velocity and flux references, Electronics, vol. 8, no. 740, pp. 1–14 (2019).
[3] Belmans R., Bisschots F., Trimmer R., Practical design considerations for braking problems in overhead crane drives, Annual Meetings of IEEE Industry Applications Society – IAS, vol. 1, pp. 473–479 (1993).
[4] Baranski M., FE analysis of coupled electromagnetic-thermal phenomena in the squirrel cage motor working at hight ambient temperature, COMPEL, vol. 38, no. 4, pp. 1120–1132 (2019).
[5] Kometani H., Sakabe S., Nakanishi K., 3-D electro-magnetic analyses of a cage induction motor with rotor skew, IEEE Transactions on Energy Conversion, vol. 11, no. 2, pp. 331–337 (1996).
[6] Torrent M., Perat J.I., Jimenez J.A., Permanent magnet synchronous motor with different rotor structures for traction motor in high speed trains, Energies, vol. 11, no. 1549, pp. 1–17 (2018).
[7] Knypinski Ł., Nowak L., Demenko A., Optimization of the synchronous motor with hybrid permanent magnet excitation system, COMPEL, 2015, vol. 34, no. 2, pp. 448–455 (2015).
[8] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020).
[9] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5, pp. 1–11 (2020).
[10] Dorell D.G., Popescu M., Evans L., Staton D.A., Knight A.M., Comparison of the permanent magnet drive motor with a cage induction motor design for a hybrid electric vehicle, Proceedings of International Power Electronics Conference – ICCE ASIA, pp. 1–6 (2010), DOI: 10.1109/IPEC.2010.5543566.
[11] Baranski M., Szel˛agW., Łyskawinski W., An analysis of a start-up process in LSPMSMs with aluminum and copper rotor bars considering the coupling of electromagnetic and thermal phenomena, Archives of Electrical Engineering, vol. 68, no. 4, pp. 933–946 (2019).
[12] Slusarek B., Kapelski D., Antal L., Zalas P., Gwozdziewicz M., Synchronous motor with hybrid permanent magnets on the rotor, Sensors, vol. 14, pp. 12425–12436 (2014).
[13] Jedryczka C., Szel˛ag W., Piech J., Multiphase permanent magnet synchronous motors with fractional slot windings, COMPEL, vol. 35, no. 6, pp. 1937–1948 (2016).
[14] Wardach M., Pałka R., Paplicki P., Bronisławski M., Novel hybrid excited machine with flux barriers in rotor structure, COMPEL, vol. 37, no. 4, pp. 1489–1499 (2018).
[15] Młynarek P., Łukaniszyn M., Jagiełła M., Kowol M., Modelling of heat transfer in low-power IPM synchronous motors, IET Science, Measurement and Technology, vol. 12, no. 8, pp. 1066–1073 (2018).
[16] Rebelo J.M., Silvestre M.A.R., Development of a coreless permanent magnet synchronous motor for a battery electric shell eco marathon prototype vehicle, Open Engineering, vol. 8, no. 1, pp. 382–390 (2018).
[17] Knypinski Ł., Krupinski J., The energy conversion efficiency in the trolley travelling drive system in tower cranes, Proceedings of 15-th Selected Issue of Electrical Engineering and Electronics – WZEE, pp. 1–4 (2020), DOI: 10.1109/WZEE48932.2019.8979940.
[18] Egrov A., Kozlow K., Belogusev V., Method for evaluation of the chain derive efficiency, Journal of Applied Engineering Science, vol. 341, pp. 277–282 (2015).
[19] Janaszek M., The analysis of the influence unequal parameters of motors on the work of multimotors traction drive, Journal of the Electrical Engineering Institute (in Polish), vol. 286, pp. 1–26 (2015).
[20] Dambrauskas K., Vanagas J., Zimnickas T., Kalvaitisand A., Ažubalis K., A method for efficiency determination of permanent magnet synchronous motor, Energies, vol. 13, no. 1004, pp. 1–15 (2020).
[21] Knypinski Ł., Krupinski J., Application of the permanent magnet synchronous motors for tower cranes, Przegląd Elektrotechniczny, vol. 96, no. 1, pp. 27–30 (2020), DOI: 10.15199/48.2020.01.07.
[22] Geng S., Zhang Y., Qiu H., Yang R., Yi R., Influence of harmonic voltage coupling on torque ripple of permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 68, no. 2, pp. 399–410 (2019).
[23] Dong S., Zhang Q., Ma H., Wang R., Design for the interior permanent magnet synchronous motor drive system based on the Z-source inverter, Energies, vol. 12, no. 3350, pp. 1–14 (2019).
[24] Chen Z., Zhang H., Tu W., Luo G., Manoharan D., Kennel R., Sensorless control for permanent magnet synchronous motor in rail transient applications using segmented synchronous modulation, IEEE Access, vol. 7, pp. 76669–7667 (2019).
[25] Putz Ł., Bednarek K., Kasprzyk L., Analysis of higher harmonics generated by LED lamps, Przegląd Elektrotechniczny, vol. 96, no. 4, pp. 90–93 (2020).
[26], accessed July 2020.






DOI: 10.24425/aee.2021.136061 ; ISSN: 1427-4221 ; eISSN: 2300-2506