Tytuł artykułu

Hot Dipping of Chromium Low-alloyed Steel in Al and Al-Si Eutectic Molten Baths

Tytuł czasopisma

Archives of Foundry Engineering




vo. 21


No 1


Attia, G.M. : Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt ; Afify, W.M.A. : Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt ; Ammar, M.I. : Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering Suez University, Egypt


Słowa kluczowe

Coating ; Hot dipping ; Aluminizing ; Chromium low alloyed steel

Wydział PAN

Nauki Techniczne




The Katowice Branch of the Polish Academy of Sciences


[1] Kuruveri, U.B., Huilgol, P., Joseph, J. (2013). Aluminising of mild steel plates. ISRN Metallurgy. 1-6.
[2] Isiko, M.B. (2012). A luminizing of plain carbon steel: Effect of temperature on coating and alloy phase morphology at constant holding time. Norway. Institute for material technology. 1-2.
[3] Davis, J.R. (1990). Surface engineering. vol. 5 of ASM Metals Handbook. Ohio, USA Materials Park.
[4] Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. London: UK. Elsevier. 17.
[5] Burakowski T., Weirzchok, T. (2000). S urface engineering of Metals- Principles, Equipments, Technologies. CRC Press, London, UK.
[6] Pattankude1, B.G., Balwan,. A.R. (2019). A review on coating process. International Research Journal of Engineering and Technology (IRJET). 06(3), 7980.
[7] Huilgol, P., Bhat, S. & Bhat, K.U. (2013). Hot-dip aluminizing of low carbon steel using Al- 7Si-2Cu alloy baths. Journal of Coatings. 2013, 1-6.
[8] Lin, M.-B. Wang, C.-J. & Volinsky, A.A. (2011). Isothermal and thermal cycling oxidation of hot- dip aluminide coating on flake/spheroidal graphite cast iron. Surface and Coatings Technology. 206, 1595-1599.
[9] Dngik Shin, Jeong-Yong Lee, Hoejun Heo, & Chung-Yun Kang. (2018). Formation procedure of reaction phases in Al hot dipping process of steel. Metals journal. 1.
[10] Yu Zhang, Yongzhe Fan, Xue Zhao, An DU, Ruina Ma, & Xiaoming Cao. (2019). Influence of graphite morphology on phase, microstructure and properities of hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron. Metals journal. 1.
[11] Voudouris, N. & Angelopoulos, G. (1997). Formation of aluminide coatings on nickel by a fluidized bed CVD process. Surface Modification Technologies XI. 558-567.
[12] Wang, D. & Shi, Z. (2004). Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. Applied surface science. Volume (227). 255-260.
[13] Murakami, K., Nishida, N., Osamura, K. & Tomota, Y. (2004). Aluminization of high purity iron by powder liquid coating. Acta Materialia. 52(5), 1271-1281.
[14] Cheng, W.-J. & Wang, C.-J. (2013). High-temperature oxidation behavior of hot-dipped aluminide mild steel with various silicon contents. Applied surface science. 274. 258-265.
[15] Mishra, B., Ionescu, M. & Chandra, T. (2013). The effect of Si on the intermetallic formation during hot dip aluminizing. Advanced Materials Research. Volume 922, 429-434.
[16] Kee-Hyun, et. Al. (2006). Observations of intermetallic compound formation of hot dip aluminized steel. Materials Science Forum. 519-521, 1871-1875.
[17] Fry, A., Osgerby, S., Wright, M. (2002). Oxidation of alloys in steam environments. United Kingdom: NPL Materials Centre. 6.
[18] Scott, D.A. (1992). Metallography and microstructure in ancient and historic metals. London. Getty publications. 57-63.
[19] Lawrence J. Korb, Rockwell, David L. Olson. (1992). ASM Handbook Vol 13: Corrosion: Fundametals, Testing and Protection. Florida, USA: ASM International Handbook Committee.
[20] Nicholls, J. E. (1964). Corr. Technol. 11.16.
[21] Azimaee, H. et. al. (2019). Effect of silicon and manganese on the kinetics and morphology of the intermetallic layer growth during hot-dip aluminizing. Surface and Coatings Technology. 357. 483-496.
[22] Sun Kyu Kim, (2013). Hot-dip aluminizing with silicon and magnesium addition I. Effect on intermertallic layer thickness. Journal of the Korean Institute of Metals and Materials. 51(11), 795-799.
[23] Springer, H., Kostka, A., Payton, Raabe, D., Kaysser, A. & Eggeler, G. (2011). On the formation and growth of intermetallic phases during interdiffusion growth between low-carbon steel and aluminum alloys. Acta Materialia. 59, 1586-1600.
[24] Kab, M., Mendil, S. & Taibi, K. (2020). Evolution of the microstructure of intermetallic compounds formed on mild steel during hot dipping in molten Al alloy bath. M etallography, Microstructure and Analysis. Journal 4.
[25] Bahadur A. & Mohanty, O.N. (1991). Materials Transaction. JIM. 32(11), 1053-1061.
[26] Bouche, K., Barbier, F. & Coulet, A. (1998). Intermetallic compound layer growth between solid iron and molten aluminium. Materials Science and Engineering A. 249(1-2), 167-175.
[27] Maitra, T. & Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part II. Materials Characterization. 49(4), 293-311.
[28] Nychka, J.A. & Clarke, D.R. (2005). Quantification of aluminum outward diffusion during oxidation of FeCrAl alloys. Oxidation of Metals. 63 (Nos.5/6), 325-351.
[29] Lars, P.H. et. All. (2002). Growth kinetics and mechanisms of aluminum-oxide films formed by thermal oxidation of aluminum. Journal of Applied Physics. 92(3), 1649-1656.
[30] Murray, J.L. (1992). Fe–Al binary phase diagram, in: H. Baker (Ed.), Alloy Phase Diagrams. ASM International. OH- USA. Materials Park. 54.






DOI: 10.24425/afe.2021.136076 ; ISSN 2299-2944


Archives of Foundry Engineering; 2021; vo. 21; No 1; 37-50

Polityka Open Access

Archives of Foundry Engineering is an open access journal with all content available with no charge in full text version.
The journal content is available under the Creative Commons Attribution 4.0 International License (