Szczegóły

Tytuł artykułu

Comparing of High-Cycle Fatigue Lifetimes in Un-corroded and Corroded Piston Aluminum Alloys in Diesel Engine Applications

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2021

Wolumin

vo. 21

Numer

No 1

Afiliacje

Azadi, M. : Semnan University, Iran ; Aroo, H. : Semnan University, Iran ; Azadi, M.. : Semnan University, Iran ; Parast, M.S.A. : Semnan University, Iran

Autorzy

Słowa kluczowe

Bending fatigue ; Corrosion-fatigue ; Piston aluminum alloys ; Immersion times ; Diesel engines

Wydział PAN

Nauki Techniczne

Zakres

89-94

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

[1] Li, Z., Li, Ch., Liu, Y., Yu, L., Guo, Q. & Li, H. (2016). Effect of heat treatment on microstructure and mechanical property of Ale10%Mg2Si alloy. Journal of Alloys and Compounds. 663, 16-19. DOI: http://dx.doi.org/10.1016/ j.jallcom.2015.12.128.
[2] Wang, M., Pang, J.C., Li, S.X. & Zhang, Z.F. (2017). Low-cycle fatigue properties and life prediction of Al-Si piston alloy at elevated temperature. Materials Science and Engineering A. 704, 480-492. DOI: http://dx.doi.org/ 10.1016/j.msea.2017.08.014.
[3] Azadi, M. (2017). Cyclic thermo-mechanical stress, strain and continuum damage behaviors in light alloys during fatigue lifetime considering heat treatment effect. International Journal of Fatigue. 99, 303-314. DOI: http://dx.doi.org/10.1016/j.ijfatigue.2016.12.001.
[4] Guerin, M., Alexis, J., Andrieu, E., Blanc, C. & Odemer, G. (2015). Corrosion-fatigue lifetime of Aluminum-Copper-Lithium alloy 2050 in chloride solution. Materials and Design 87, 681-69. DOI: http://dx.doi.org/10.1016/j.matdes. 2015.08.003.
[5] Chen, Y., Zhou, J., Liu, Ch. & Wang, F. (2017). Effect of pre-deformation on the pre-corrosion multiaxial fatigue behaviors of 2024-T4 aluminum alloy. International Journal of Fatigue. 108, 35-46. DOI: https://doi.org/10.1016/ j.ijfatigue.2017.11.008.
[6] Chen, Y., Liu, Ch., Zhou, J. & Wang, X. (2017). Multiaxial fatigue behaviors of 2024-T4 aluminum alloy under different corrosion conditions. International Journal of Fatigue. 98, 269-278. DOI: http://dx.doi.org/10.1016/j.ijfatigue. 2017.02.004.
[7] Chen, Y., Liu, Ch., Zhou, J. & Wang, F. (2019). Effect of alternate corrosion factors on multiaxial low-cycle fatigue life of 2024-T4 aluminum alloy. Journal of Alloys and Compounds. 772, 1-14. DOI: https://doi.org/10.1016/ j.jallcom.2018.08.282.
[8] Rodriguez, R.I., Jordon, J.B., Allison, P.G., Rushing, T. & Garcia, L. (2019). Corrosion effects on fatigue behavior of dissimilar friction stir welding of high-strength aluminum alloys. Material Science and Engineering. 742, 255-268. DOI: https://doi.org/10.1016/j.msea.2018.11.020.
[9] Mishra, R.K. (2020). Study the effect of pre-corrosion on mechanical properties and fatigue life of aluminum alloy 8011. Materials Today: Proceedings. 25(4), 602-609. DOI: https://doi.org/10.1016/j.matpr.2019.07.375.
[10] Azadi, M., Bahmanabadi, H., Gruen, F. & Winter, G. (2020). Evaluation of tensile and low-cycle fatigue properties at elevated temperatures in piston aluminum-silicon alloys with and without nano-clay-particles and heat treatment. Materials Science and Engineering A. 788, 139497. DOI: https://doi.org/10.1016/j.msea.2020.139497.
[11] Metallic materials-rotating bar bending fatigue testing. (2010). Standard No. ISO-1143, ISO International Standard.
[12] Aroo, H., Parast, M.S.A., Azadi, M. & Azadi, M. (2020). Investigation of effects of nano-particles, heat treatment process and acid amount on corrosion rate in piston aluminum alloy using regression analysis. 11th International Conference on Internal Combustion Engines and Oil, Tehran, Iran (in Persian).
[13] Azadi, M., Zolfaghari, M., Rezanezhad, S. & Azadi, M. (2018). Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods. Applied Physics A. 124(5), 377. DOI: https://doi.org/10.1007/s12540-019-00498-7
[14] Azadi, M. & Aroo, H. (2020). Temperature effect on creep and fracture behaviors of nano-SiO2-composite and alsi12cu3ni2mgfe aluminum alloy. International Journal of Engineering. 33(8), 1579-1589. DOI: 10.5829/ije. 2020.33.08b.16.
[15] Azadi, M. & Aroo, H. (2019). Creep properties and failure mechanisms of aluminum alloy and aluminum matrix silicon oxide nano-composite under working conditions in engine pistons. Material Research Express. 6, 115020. DOI: https://doi.org/10.1088/2053-1591/ab455f.
[16] Zainon, F., Rafezi Ahmad, K. & Daud, R. (2015). Effect of heat treatment on microstructure, hardness and wear of aluminum alloy 332. Applied Mechanics and Materials. 786, 18-22. DOI: 10.4028/www.scientific.net/AMM.786.18.
[17] Han, L., Sui, Y., Wang, Q., Wang, K. & Jiang, Y. (2017). Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds. 695, 1566-1572. DOI: https://doi.org/10.1016/ S1003-6326(20)65333-X.
[18] Humbertjean, A. & Beck, T. (2013). Effect of the casting process on microstructure and lifetime of the Al-piston-alloy AlSi12Cu4Ni3 under thermo-mechanical fatigue with superimposed high-cycle fatigue loading. International Journal of Fatigue. 53, 67-74. DOI: 10.1016/j.ijfatigue. 2011.09.017.
[19] Mollaei, M. Azadi, M. Tavakoli, H. (2018). A parametric study on mechanical properties of aluminum-silicon/SiO2 nano-composites by a solid-liquid phase processing. Applied Physics A, 124, 504. https://doi.org/10.1007/s00339-018-1929-2
[20] Arab, M., Azadi, M. & Mirzaee, O. (2020). Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites, Materials Chemistry and Physics, 253, 123259. DOI: https://doi.org/10.1016/j.matchemphys.2020.123259.

Data

2021.03.10

Typ

Article

Identyfikator

DOI: 10.24425/afe.2021.136083 ; ISSN 2299-2944

Źródło

Archives of Foundry Engineering; 2021; vo. 21; No 1; 89-94
×