Details
Title
Free Vibration Analysis of A357 Alloy Reinforced with Dual Particle Size Silicon Carbide Metal Matrix Composite Plates Using Finite Element MethodJournal title
Archives of Foundry EngineeringYearbook
2021Volume
vo. 21Issue
No 1Authors
Affiliation
Lakshmikanthan, A. : Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, India ; Lakshmikanthan, A. : Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India-560064 ; Mahesh, V. : Nonlinear Multifunctional Composites Analysis and Design (NMCAD) Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India-560012 ; Prabhu, R.T. : CEMILAC, Defence R&D Organisation, Bangalore, India-560093 ; Patel, M.G.C. : Department of Mechanical Engineering, PES Institute of Technology and Management, Shivamogga, India-577204 ; Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, IndiaKeywords
Finite element method ; First order shear deformation theory (FSDT) ; A357 alloy ; Hamilton’s principle ; A357/DPS-SiC CompositesDivisions of PAS
Nauki TechniczneCoverage
101-112Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Raju R. S. S., Panigrahi, M.K., Ganguly R.I., & Srinivasa Rao G. (2019). Tribological behaviour of al-1100-coconut shell ash (CSA) composite at elevated temperature, Tribology International. 129, 55-66.[2] Bishop, J.E., & Kinra, V.K. (1995). Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites. Metallurgical and Materials Transactions A. 26(11), 2773-2783.
[3] Challer, R.S. (2003). Metal matrix composites, a smart choice for high damping materials. Journal of Alloys and Compounds. 355(1-2), 131-135.
[4] Ehsani, R., & Seyed Reihani, S.M. (2004). Aging behaviour and tensile properties of squeeze cast Al 6061/SiC metal matrix composites. Scientia Iranica. 11(4), 392-397.
[5] Zhang, J., Perez, R.J., Wong, C.R., & Lavernia, E.J. (1994). Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Materials Science and Engineering: R: Reports. 13 (8), 325-389.
[6] Lavernia, E.J., Perez, R.J., & Zhang, J. (1995). Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A. 26 (11), 2803-2818.
[7] Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., & Zhang, D. (2012). Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia. 66(8), 594-597.
[8] Qian, L. F., Batra, R. C., & Chen, L. M. (2004). Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Composites Part B: Engineering. 35(6-8), 685-697.
[9] Sharma, S.C., Krishna, M., & Narasimha Murthy, H.N. (2004). Studies on the effect of residual thermal stresses on thermal expansion and damping behaviour of Al6061/ALBITE MMCs. Adv. in Vibration Engg., 3(4), 320-331 (2004).
[10] Sastry, S., Krishna, M., & Uchil, J. (2001). A study on damping behaviour of aluminite particulate reinforced ZA-27 alloy metal matrix composites. Journal of Alloys and Compounds. 314(1-2), 268-274.
[11] Zhang, J., Perez, R.J., Wong, C.R., & Lavernia, E.J. (1994). Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Materials Science and Engineering: R: Reports. 13(8), 325-389.
[12] James, D.W. (1969). High damping metals for engineering applications. Materials Science and Engineering. 4(1), 1-8.
[13] Zhang, J., Perez, R.J., & Lavernia, E.J. (1993). Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. Journal of Materials Science. 28(9), 2395-2404.
[14] Zhang, J., Perez, R.J., & Lavernia, E.J. (1994). Effect of SiC and graphite particulates on the damping behavior of metal matrix composites. Acta Metallurgica et Materialia. 42(2), 395-409.
[15] Kang, C.S., Maeda, K., Wang, K.J., & Wakashima, K. (1998). Dynamic Young's modulus and internal friction in particulate SiC Al composites. Acta Materialia, 46(4), 1209-1220.
[16] Zhang, J., Perez, R.J., Gupta, M., & Lavernia, E.J. (1993). Damping behavior of particulate reinforced 2519 Al metal matrix composites. Scripta Metallurgica et Materialia, 28(1), 91-96.
[17] Ersulu S.O., & Aydogdu M, Mechanical and Vibration analysis of Al/SiC composite plates. Ankara International Aerospace Conference AIAC-070 (2007).
[18] El-Kady, E. Y., Mahmoud, T. S., El-Betar, A. A., & Abdel-Aziz, M. (2012). Dynamic behaviour of Cast A356/Al2O3 aluminum metal matrix nano composites. Materials Sciences and Applications. 3(11), 815-820.
[19] Ravikanth Raju, P., & Venkat Reddy, R. (2018). Mechanical characterization and free vibration of composite laminated plates. International Journal of Mechanical Engineering and Technology (IJMET) 9(9), 186-191.
[20] Soleymani Shishvan, S., & Asghari, A. H. (2017). Effects of particle shape and size distribution on particle size-dependent flow strengthening in metal matrix composites. Scientia Iranica B, 24 (3), 1091-1099.
[21] Civalek, Ö., Numanoğlu, H. M., & Mercan, K. (2019). Finite element model and size dependent stability analysis of boron nitride and silicon carbide nanowires/nanotubes. Scientia Iranica, 26(4), 2079-2099.
[22] Khan, A.A., Naushad Alam, M., & Wajid, M. (2016). Finite element modelling for static and free vibration response of functionally graded beam. Latin American Journal of Solids and Structures, 13, 690-714.
[23] Zuo, H., Yang, Z., Chen, X., Xie, Y., & Zhang, X. (2014). Bending, free vibration and buckling analysis of functionally graded plates via wavelet finite element method. Computers, Materials and Continua (CMC), 44 (3), 167-204.
[24] An, X., Liu, Y., Huang, F., & Jia, Q. (2018). MPFEM modeling on the compaction of Al/SiC composite powders with core/shell structure. Powder Technol. DOI: 10.5772/IntechOpen.76563, pp. 21-43, (2018).
[25] Bozkurt, Y., & Ersoy, S. (2016). Determining the vibration behavior of metal matrix composite used in aerospace industry by FEM. Vibroengineering PROCEDIA, 9, 29-32.
[26] Santhosh, N., & Kempaiah, U. N. (2018). Vibration characterization of SiCp and fly ash dispersion strengthened aluminium 5083 composites. Journal of Aerospace Engineering & Technology. 7(3), 61-72.
[27] Kushwaha, P.K., & Vimal, J. (2014). Study of vibration analysis of laminated composite plates using FEM. International Journal of Advanced Mechanical Engineering. 4(6), 675-680.
[28] Alaneme, K.K., & Fajemisin, A.V. (2018). Evaluation of the damping behaviour of Al-Mg-Si alloy-based composites reinforced with steel, steel and graphite, and silicon carbide particulates. Engineering Science and Technology, an International Journal. 21(4), 798-805.
[29] Gholami, R., & Ansari, R. (2019). On the vibration of postbuckled functionally graded-carbon nanotube reinforced composite annular plates. Scientia Iranica, 26(6), 3857-3874.
[30] Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T., & Loja, M.A.R. (2019). Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Composite Structures. 226, 111254.
[31] Vinyas, M., Sandeep, A.S., Nguyen-Thoi, T., Ebrahimi, F., & Duc, D.N. (2019). A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. Journal of Intelligent Material Systems and Structures. 30(16), 2478-2501.
[32] Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F., & Duc, N.D. (2019). Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Composite Structures. 214, 132-142.
[33] Avinash, L., Ram Prabhu, T., & Bontha, S. (2016). The Effect on the dry sliding wear behavior of gravity cast A357 reinforced with dual size silicon carbide particles. Applied Mechanics and Materials. 829, 83-89.
[34] Lakshmikanthan, A., Bontha, S., Krishna, M., Koppad, P. G., & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds.786, 570-580.
[35] Avinash Lakshmikanthan, T. Ram Prabhu, Udayagiri Sai Babu, Praveennath G. Koppad, Manoj Gupta, Munishamaiah Krishna , Srikanth Bontha (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), May June 2020, 6434-6452
[36] Matweb.com.2020.Matweb-The Online Materials Information Resource.[online] Available at :< http://www.matweb.com/search/DataSheet.aspx?
[37] Mahesh, V., Sagar, P. J., & Kattimani, S. (2018). Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. Journal of Intelligent Material Systems and Structures. 29 (7), 1430-1455.
[38] Herrmann, J., Kühn, T., Müllenstedt, T., Mittelstedt, S., & Mittelstedt, C. (2018). Closed-form approximate solutions for the local buckling behaviour of composite laminated beams based on third order shear deformation theory. Advances in Mechanics of Materials and Structural Analysis. 80, 175-205.
[39] Vinyas, M., Kattimani, S.C. (2018). Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Composite Structures. 202, 1339-1352.
[40] Vinyas, M. (2018). A higher order free vibration analysis of Carbon Nanotube-reinforced Magneto-electro-elastic plates using finite element methods. Composites Part-B. 158, 286-301.
[41] Mohammadimehr, M., Okhravi, S.V. & Akhavan Alavi, S.M. (2018). Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. Journal of Vibration and Control. 24(8), 1551-1569.
[42] Shen, H.S. (2009). Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures. 91, 9-19.
[43] Klimenda, F., & Soukup, J. (2017). Modal analysis of thin aluminium plate. Procedia Engineering. 177, 11-16.