Szczegóły

Tytuł artykułu

Spatial Thermo-Mechanical Model of Mushy Steel Deformation Based on the Finite Element Method

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2021

Wolumin

vo. 21

Numer

No 2

Afiliacje

Hojny, M. : AGH University of Science and Technology, Cracow, Poland ; Dębiński, T. : AGH University of Science and Technology, Cracow, Poland ; Głowacki, M. : AGH University of Science and Technology, Cracow, Poland ; Nguyen, Trang Thi Thu : AGH University of Science and Technology, Cracow, Poland

Autorzy

Słowa kluczowe

Mechanical properties ; Soft-reduction ; Semi-solid ; Numerical modelling ; Physical simulation

Wydział PAN

Nauki Techniczne

Zakres

17-28

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

[1] Haga, T. & Suzuki, S.(2003). Study on high-speed twin-roll caster for aluminum alloys. Journal of Materials Processing Technology. 144(1), 895-900. DOI: 10.1016/S0924-0136(03)00400-X.
[2] Haga, T., Tkahashi, K., Ikawa, M., et al. (2004). Twin roll casting of aluminum alloy strips. Journal of Materials Processing Technology. 154(2), 42-47. DOI: 10.1016/j. jmatprotec.2004.04.018.
[3] Hojny, M. (2018). Modeling steel deformation in the semi-solid state. Switzerland: Springer.
[4] Zhang, L., Shen, H., Rong, Y., et al. (2007). Numerical simulation on solidification and thermal stress of continuous casting billet in mold based on meshless methods. Materials Science and Engineering. 466(1-2), 71-78. DOI: 10.1016/ j.msea.2007.02.103.
[5] Kalaki, A. & Ketabchi, M. (2013). Predicting the rheological behavior of AISI D2 semi-solid steel by plastic instability approach. American Journal of Materials Engineering and Technology. 1(3), 41-45. DOI: 10.12691/materials-1-3-3.
[6] Hassas-Irani, S.B., Zarei-Hanzaki, A., Bazaz, B., Roostaei, A. (2013). Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Materials and Design. 46, 579-587. DOI: 10.1016/j.matdes.2012.10.041.
[7] Zhang, C., Zhao, S., Yan, G., Wang, Y. (2018). Deformation behaviour and microstructures of semi-solid A356.2 alloy prepared by radial forging process during high solid fraction compression. Journal of Engineering Manufacture. 232(3), 487, 498.
[8] Wang, J. (2016). Deformation Behavior of Semi-Solid ZCuSn10P1 Copper Alloy during Isothermal Compression. Solid State Phenomena. 256, 31-38.
[9] Shashikanth, C.H. & Davidson, M.J. (2015). Experimental and simulation studies on thixoforming of AA 2017 alloy. Mat. at High Temperatures. 32(6), 541-550. DOI: 10.1179/1878641314Y.0000000043.
[10] Bharath, K., Khanra, A.K., Davidson, M.J. (2019). Microstructural Analysis and Simulation Studies of Semi-solid Extruded Al–Cu–Mg Powder Metallurgy Alloys (pp.101-114). Advances in Materials and Metallurgy: Springer.
[11] Kang, C.G. & Yoon, J.H. (1997). A finite-element analysis on the upsetting process of semi-solid aluminum material. Journal of Materials Processing Technology. 66 (1-3), 76-84. DOI: 10.1016 / S0924-0136 (96) 02498-3.
[12] Hostos, J.C.A., et al. (2018). Modeling the viscoplastic flow behavior of a 20MnCr5 steel grade deformed under hot-working conditions, employing a meshless technique. International Journal of Plasticity. 103, 119-142. DOI: 10.1016/j.ijplas.2018.01.005.
[13] Kopp, R., Choi, J. & Neudenberger, D. (2003). Simple compression test and simulation of an Sn–15% Pb alloy in the semi-solid state. Journal of Materials Processing Technology. 135(2), 317-323. DOI: 10.1016/S0924-0136(02)00863-4.
[14] Modigell, M., Pape, L. & Hufschmidt, M. (2004). The Rheological Behaviour of Metallic Suspensions. Steel Research International. 75(3), 506-512. DOI: 10.1002/ srin.200405803.
[15] Hufschmidt, M., Modigell, M. & Petera, J. (2004). Two-Phase Simulations as a Development Tool for Thixoforming Processes. Steel Research International. 75(3), 513-518. DOI: 10.1002/srin.200405804.
[16] Jing, Y.L., Sumio, S. & Jun, Y. (2005). Microstructural evolution and flow stress of semi-solid type 304 stainless steel. Journal of Materials Processing Technology. 161(3), 396-406. DOI: 10.1016/j.jmatprotec.2004.07.063.
[17] Jin, S.D. & Hwan, O.K. (2002). Phase-field modelling of the thermo-mechanical properties of carbon steels. Acta Materialia. 50, 2259-2268. DOI: 10.1016/S1359-6454(02)00012-5.
[18] Xiao, C., et al. (2013). Optimization Investigation on the Soft Reduction Parameters of Medium Carbon Microalloy. Materials Processing Fundamentals. Springer. 109-116. DOI: 10.1007/978-3-319-48197-5_12.
[19] Han, Z., et al. (2010). Development and Application of Dynamic Soft-reduction Control Model to Slab Continuous Casting Process. ISIJ International. 50(11), 1637-1643. DOI: 10.2355/isijinternational.50.1637.
[20] Li, Y., Li, L. & Zhang, J. (2017). Study and application of a simplified soft reduction amount model for improved internal quality of continuous casting. Steel Research International. 88(12), 1700176-1700219. DOI: 10.1002/srin.201700176.
[21] Bereczki, P., et al. (2015). Different applications of the gleeble thermal–mechanical simulator in material testing, technology optimization, and process modeling. Materials Performance and Characterization 4. No. 3, 399-420. DOI: 10.1520/ MPC20150006.
[22] Hojny, M., et al. (2019). Multiscale model of heating-remelting-cooling in the Gleeble 3800 thermo-mechanical simulator system. Archives of Metallurgy and Materials. 64(1), 401-412. DOI: 10.24425/amm.2019.126266.
[23] Pieja, T., et al. (2017). Numerical analysis of cooling system in warm metal forming process (pp. 261-266). Brno, Czech: Proceedings of the Metal.
[24] Hojny, M. (2013). Thermo-mechanical model of a TIG welding process for the aircraft industry. Archives of Metallurgy and Materials. 58(4), 1125-1130. DOI: 10.2478/amm-2013-0136.
[25] Hu, D. & Kovacevic, R. (2003). Sensing, modeling and control for laser-based additive manufacturing. Journal of Machine Tools & Manufacture. 43, 51-60. DOI: 10.1016/S0890-6955(02)00163-3.
[26] Ba Lan, T., et al. (2017). A new route for semi-solid steel forging. Manufacturing Technology. 66(1), 297-300. DOI: 10.1016/j.cirp.2017.04.111.
[27] Głowacki, M. (2005). The mathematical modelling of thermo-mechanical processing of steel during multi-pass shape rolling. Journal of Materials Processing Technology. 168, 336-343. DOI: 10.1016/j.jmatprotec.2004.12.007.
[28] Lliboutry, L.A. (1987). The rigid-plastic model, Mechanics of Fluids and Transport Processes (pp. 379-410). Dordrecht: Springer.
[29] Lenard, J.G., Pietrzyk, M., Cser, L. (1999). Mathematical and physical simulation of the properties of hot rolled products. Amsterdam: Elsevier.
[30] Głowacki, M. (2012). Mathematical modeling and computer simulations of metal deformation - theory and practice (pp. 229-238). Kraków: AGH. (in Polish).
[31] Jonsta. P., et al. (2015). Contribution to the thermal properties of selected steels. Metalurgija. 54(1), 187-190.
[32] Szyczgioł, N. (1997). Równania krzepnięcia w ujęciu metody elementów skończonych. Solidification of Metals and Alloys. 30, 221-232.
[33] Lewis, R.W, Roberts, P.M. (1987). Finite element simulation of solidification problems. Applied Scientific Research. 44, 61-92. DOI: 10.1007/978-94-009-3617-1_6.

Data

2021.05.20

Typ

Article

Identyfikator

DOI: 10.24425/afe.2021.136093 ; eISSN 2299-2944

Źródło

Archives of Foundry Engineering; 2021; vo. 21; Ahead of print
×