Details
Title
Recognition of handwritten Latin characters with diacritics using CNNJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Authors
Keywords
handwritten documents ; diacritics ; neural networks ; character recognition ; deep learningDivisions of PAS
Nauki TechniczneCoverage
e136210Bibliography
- E. Lukasik and T. Zientarski, “Comparative analysis of selected programs for optical text recognition”, J. Comput. Sci. Inst. 7, 191‒194 (2018).
- P. Kusaj, M. Kosyra, and M. Charytanowicz, “Web-Page Classification Based on Wikipedia Structure. Recent Developments” in Mathematics and Informatics, Contemporary Mathematics and Computer Science 2, Part II, A. Zapała (red.), pp. 89‒102, Wydawnictwo KUL, 2016.
- D. Połap and M. Woźniak, “Flexible neural network architecture for handwritten signatures recognition”, Int. J. Electron. Telecommun. 62, 197–202 (2016).
- M. Milosz and J. Gazda, “Effectiveness of artificial neural networks in recognising handwriting characters”, J. Comput. Sci. Inst. 7, 210‒214 (2018).
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”. Proc. IEEE 86(11), 2278‒2324 (1998).
- A. Pal and D. Singh, “Handwritten English character recognition using neural network”, Int. J. Comput. Sci. Commun. 1(2), 141‒144 (2010).
- B.K. Verma, “Handwritten Hindi character recognition using multilayer perceptron and radial basis function neural network”, IEEE International Conference on Neural Network 4, 2111‒2115 (1995).
- D. Singh, S.K. Singh, and M. Dutta, “Hand written character recognition using twelve directional feature input and neural network”, Int. J. Comput. Appl. 1(3), 94‒98 (2010).
- Y. Perwej and A. Chatirvedi, “Neural networks for handwritten English alphabet recognition”, Int. J. Comput. Appl. 20(7), 1–5 (2011).
- J. Pradeep, E. Srinivasan, and S. Himavathi, “Neural network based handwritten character recognition system without feature extraction”, 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), Tamilnadu, 2011, pp. 40‒44.
- A.M. Obaid, H.M. El Bakry, M.A. Elodusuky, and A.I. Shehab, “Handwritten text recognition system based on neural network”, Int. J. Adv. Res. Comput. Sci. Technol. 4(1), 72‒77 (2016).
- V. Lebedev and V. Lempitsky. “Speeding-up convolutional neural networks: A survey”, Bull. Pol. Ac.: Tech. 66(6), 799‒810 (2018).
- D. Firmani, P. Merialdo, E. Nieddu, and S. Scardapane, “In codice ratio: OCR of handwritten Latin documents using deep convolutional networks”, in AI* CH@ AI* IA, 2017, pp. 9‒16.
- F.P. Such, D. Peri, F. Brockler, P. Hutkowski, and R. Ptucha. “Fully convolutional networks for handwriting recognition”. In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), IEEE, 2018, pp. 86‒91.
- P. Grother, “NIST special database 19 handprinted forms and characters database”, National Institute of Standards and Technology, Tech. Rep., 1995.
- M. Lutf, X. You, Y. Cheung, and C.L.P. Chen, “Arabic font recognition based on diacritics features”, Pattern Recognit. 47, 672–684 (2014).
- K.E. Gajoui, F.A. Allah, and M. Oumsis, “Diacritical Language OCR based on neural network: Case of Amazigh language”. Procedia Comput. Sci. 73, 298‒305 (2015).
- J. Náplava, M. Straka, P. Straňák, and J. Hajič, “Diacritics Restoration Using Neural Networks”, Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC), 2018.
- D. Grzelak, K. Podlaski, and G. Wiatrowski, “Analyze the effectiveness of an algorithm for identifying Polish characters in handwriting based on neural machine learning technologies”, Journal of King Saud University – Computer and Information Sciences, 2019, doi: 10.1016/j.jksuci.2019.08.001.
- G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, ”EMNIST: an extension of MNIST to handwritten letters”. Retrieved from: http:// arxiv.org/abs/1702.05373, 2017.
- M. Tokovarov, M. Kaczorowska, and M. Milosz, “Development of Extensive Polish Handwritten Characters Database for Text Recognition Research”, Adv. Sci. Technol. Res. J. 14(3), 30–38 (2020), doi: 10.12913/22998624/122567.
- M. Charytanowicz and P. Kulczycki, “An Image Analysis Algorithm for Soil Structure Identification“; in: Intelligent Systems’2014, pp. 681‒692, D. Filev, J. Jablkowski, J. Kacprzyk, I. Popchev, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, S. Zadrozny (eds.), Springer, Berlin, 2014.
- The Polish Handwritten Characters Database, [Online]. https://cs.pollub.pl/phcd/?lang=en.
- D.P. Kingma and J.L. Ba, “Adam: A method for stochastic optimization”. arXiv:1412.6980v9, 2014.
- M. Abadi et al., “Tensorflow: A system for large-scale machine learning,” in 12th Symposium on Operating Systems Design and Implementation, 2016, pp. 265‒283.