Towards microfluidics for mycology – material and technological studies on LOCs as new tools ensuring investigation of microscopic fungi and soil organisms

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences






No. 1


Podwin, Agnieszka : Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Janisz, Tymon : Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Patejuk, Katarzyna : Wrocław University of Environmental and Life Sciences, Department of Plant Protection, Grunwaldzki Sq. 24a, 50-363 Wroclaw, Poland ; Szyszka, Piotr : Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Walczak, Rafał : Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland ; Dziuban, Jan : Wrocław University of Science and Technology, Faculty of Microsystem Electronics and Photonics, ul. Janiszewskiego 11/17, 50-372 Wrocław, Poland



microfluidics ; lab-chip ; biomaterials ; cell cultivation ; mycology

Divisions of PAS

Nauki Techniczne




  1.  C. Wagg, et al., “Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning”, Nat. Commun. 10, 4841 (2019), doi: 10.1038/s41467-019-12798-y.
  2.  M.J. Roossinck, “Evolutionary and ecological links between plant and fungal viruses”, New Phytol. 221(1), 86‒92 (2019), doi: 10.1111/ nph.15364, 2019.
  3.  H. Grossart, et al., “Fungi in aquatic ecosystems”, Nat. Rev. Microbiol. 17, 339–354 (2019), doi: 10.1038/s41579-019-0175-8.
  4.  M. Rai and G. Agarkar, “Plant–fungal interactions: What triggers the fungi to switch among lifestyles?”, Crit. Rev. Microbiol. 42(3), 428‒38 (2016), doi: 10.3109/1040841X.2014.958052.
  5.  A. Frew, J.R. Powell, G. Glauser, A.E. Bennett, and S.N. Johnson, “Mycorrhizal fungi enhance nutrient uptake but disarm defences in plant roots, promoting plant-parasitic nematode populations”, Soil Biol. Biochem. 126, 123‒132 (2018), doi: 10.1016/j.soilbio.2018.08.019.
  6.  M. Dicke, A. Cusumano, and E.H. Poelman, “Microbial Symbionts of Parasitoids”, Annu. Rev. Entomol. 65, 171‒190 (2020).
  7.  B. Kendrick, The fifth kingdom. An Introduction to mycology. Hackett Publishing Company, Inc., Indianapolis, USA, 2017.
  8.  T.A. Richards, G. Leonard, and J.G. Wideman. “What Defines the “Kingdom” Fungi?” in The fungal Kingdom, Washington, DC: ASM Press, American Society for Microbiology, Wiley Online Library, 2018.
  9.  T.S. Kaminski, O. Scheler, and P. Garstecki, “Droplet microfluidics for microbiology: techniques, applications and challenges”, Lab Chip 16, 2168‒2187 (2016).
  10.  A. Burmeister and A. Grünberger, “Microfluidic cultivation and analysis tools for interaction studies of microbial co-cultures”, Curr. Opin. Biotechnol. 62, 106‒115 (2020).
  11.  C.E. Stanley and M.G.A. van der Heijden, “Microbiome-on-a-Chip: New Frontiers in Plant–Microbiota Research”, Trends Microbiol. 25(8), 610‒613, 2017.
  12.  S.R. Lockery, et al., “Artificial Dirt: Microfluidic Substrates for Nematode Neurobiology and Behavior”, J. Neurophysiol 99(6), 3136‒3143, 2008.
  13.  H. Massalha, E. Korenblum, S. Malitsky, O.H. Shapiro, and A. Aharoni, “Live imaging of root–bacteria interactions in a microfluidics setup”, PNAS 114(17), 4549‒4554 (2017).
  14.  C.S. Effenhauser, A. Paulus, A. Manz, and H.M. Widmer, “High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device”, Anal. Chem. 66, 1994(18), 2949–2953 (1994).
  15.  L.J. Golonka, “Technology and applications of Low Temperature Cofired Ceramic (LTCC) based sensors and microsystems”, Bull. Pol. Ac.: Tech. 54(2), 221‒231 (2006).
  16.  M. Boyd-Moss, S. Baratchi, M. Di Venere, and K. Khoshmanesh, “Self-contained microfluidic systems: A review”, Lab Chip 16(17), 3177‒3192 (2016).
  17.  G.M. Whitesides, “The origins and the future of microfluidics”, Nature 442, 368–373 (2006).
  18.  B. Zhang, M. Kim, T. Thorsen, and Z. Wang, “A self-contained microfluidic cell culture system”, Biomed. Microdevices 11(6), 1233‒1237 (2009).
  19.  S. Ye and I.N.M. Day, Microarrays & microplates: applications in biomedical sciences, 1st Edition, Garland Science, New York, USA, 2002.
  20.  R.J. Courcol, H. Deleersnyder, M. Roussel-Delvallez, and G.R. Martin, “Automated reading of a microtitre plate: preliminary evaluation in antimicrobial susceptibility tests and Enterobacteriaceae identification”, J. Clin. Pathol. 36(3), 341–344 (1983).
  21.  J.H. Platt, A.B. Shore, A.M. Smithyman, and G.L. Kampfner, “A computerised ELISA system for the determination of total and antigen- specific immunoglobulins in serum and secretions”, J. Immunoassay Immunochem. 2, 59‒74 (2006).
  22.  L. Maresová and H. Sychrova, “Applications of a microplate reader in yeast physiology research”, BioTechniques 43(5), 667‒672, 2007.
  23.  M. Frąc, A. Gryta, K. Oszust and N. Kotowicz, “Fast and accurate microplate method (Biolog MT2) for detection of Fusarium fungicides resistance/sensitivity”, Front. Microbiol. 7, 489 (2016).
  24.  C.E. Stanley, G. Grossmann, X. Casadevall i Solvas, and A.J. deMello, “Soil-on-a-Chip: microfluidic platforms for environmental organismal studies”, Lab Chip 16 (2), 228‒241 (2016).
  25.  A. Sanati Nezhad, “Microfluidic platforms for plant cells studies”, Lab Chip 14(17), 3262‒3274 (2014).
  26.  J.C. Jokerst and J.M. Emory, C.S. Henry, “Advances in microf luidics for environmental analysis”, Analyst 137(1), 24‒34 (2012).
  27.  D.W. Inglis, N. Herman, and G. Vesey, “Highly accurate deterministic lateral displacement device and its application to purification of fungal spores”, Biomicrofluidics 24(2), 024109 (2010).
  28.  Z. Palková, L. Váchová, M. Valer, and T. Preckel, “Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system”, Cytometry A 59, 246‒253 (2004).
  29.  M. Held, C. Edwards, and D.V. Nicolau, “Examining the behaviour of fungal cells in microconfined mazelike structures”, in Proc. SPIE 6859, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues VI, 2008.
  30.  M. Held, O. Kašpar, C. Edwards, and D.V. Nicolau, “Intracellular mechanisms of fungal space searching in microenvironments”, PNAS 116, 13543‒13552 (2019).
  31.  E. Berthier, E.W. Young, and D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia”, Lab Chip 12(7), 1224‒1237 (2012).
  32.  D. Stadnik, M. Chudy, Z. Brzózka, and A. Dybko, “Spectrophotometric analysis using poly (dimethylsiloxane) microfluidic detectors”, Bull. Pol. Ac.: Tech. 53(2), 163‒165 (2005).
  33.  X. Che, J. Boldrey, X. Zhong, S. Unnikandam-Veettil, I. Schneider, D. Jiles, and L. Que, “On-Chip Studies of Magnetic Stimulation Effect on Single Neural Cell Viability and Proliferation on Glass and Nanoporous Surfaces”, ACS Appl. Mater. Interfaces 10 (34), 28269‒28278 (2018).
  34.  C. Iliescu, F. Tay, and J. Miao, “Strategies in deep wet etching of Pyrex glass”, Sens. Actuator A Phys. 133, 395‒400 (2007).
  35.  R. Ma, Q. Chen, Y. Fan, Q. Wang, S. Chen, X. Liu, L. Cai, and B. Yao, “Six new soil–inhabiting Cladosporium species from plateaus in China”, Mycologia 109(2), 244‒260 (2017).
  36.  I. Ghiaie Asl, M. Motamedi, G.R. Shokuhi, N. Jalalizand, A. Farhang, and H. Mirhendi, “Molecular characterization of environmental Cladosporium species isolated from Iran.” Curr. Med. Mycol 3(1), 1–5 (2017).
  37.  T. Watanabe, Pictorial Atlas of Soil and Seed Fungi: Morphologies of Cultured Fungi and Key to Species, CRC Press, Washington, USA (2011).
  38.  K.H. Domsch, W. Gams, and T.H. Anderson. Compendium of Soil Fungi, T: 1, Academic Press, London, UK, 1980.
  39.  J.C. Gilman, A manual of soil fungi, Ed. 2, Iowa State College Press, Ames, USA, 1957.
  40.  W. Pusz, K. Patejuk, and A. Kaczmarek, “Fungi colonizing of small balsam seeds (Impatiens parviflora DC.) seeds in Wigry National Park”, Prog. Plant Prot. 60, 33‒40 (2020).
  41.  B. Jacewski, J. Urbaniak, P. Kwiatkowski, and W. Pusz, “Microfungal diversity of Juncus trifidus L. and Salix herbacea L. at isolated locations in the Sudetes and Carpathian Mountains”, Acta Mycol. 54(1), 1118 (2019).
  42.  E. Levetin and K. Dorseys, “Contribution to leaf surface fungi to the air spora.” Aerobiologia 22, 3‒12 (2006).
  43.  S.N. Stohr and J. Dighton, “Effects of species diversity on establishment and coexistence: A phylloplane fungal community model system”, Microb. Ecol. 48, 431‒438 (2004).
  44.  E.M. El-Morsy, “Fungi isolated from the endorhizosphere of halophytic plants from the Red Sea Coast of Egypt”, Fungal Divers. 5, 43‒54 (2000).
  45.  K. Bensch, U. Braun, J.Z. Groenewald, and P.W. Crous, “The genus Cladosporium”, Stud. Mycol. 72, 1‒401 (2012).
  46.  M.B. Ellis, Dematiaceous Hyphomycetes, Commonwealth Mycological Institute, Kew, Surrey, UK, 1971.
  47.  R. Ogórek, A. Lejman, W. Pusz, A. Miłuch, and P. Miodyńska, “Characteristics and taxonomy of Cladosporium fungi”, Med. Mycol. J. 19(2), 80‒85 (2012).
  48.  S. Sharma, R.C. Sharma, and R. Malhotra, “Effect of the Saprophytic Fungi Alternaria alternata and Cladosporium oxysporum on Germination, Parasitism and Viability of Melampsora ciliata Urediniospores”, J. Plant. Dis. Prot. 109(3), 291‒300 (2002).
  49.  W. Pusz, R. Weber, A. Dancewicz, and W. Kita, “Analysis of selected fungi variation and its dependence on season and mountain range in southern Poland – key factors in drawing up trial guidelines for aeromycological monitoring”, Environ. Monit. Assess. 189(10), 526 (2017).
  50.  W. Pusz, W. Kita, A. Dancewicz, and R. Weber, “Airborne fungal spores of subalpine zone of the Karkonosze and Izerskie Mountains (Poland)”, J. Mt. Sci. 10(10), 940–952 (2013).
  51.  W. Pusz, M. Król, and T. Zwijacz-Kozica, “Airborne fungi as indicators of ecosystem disturbance: an example from selected Tatra Mountains caves (Poland)”, Aerobiologia 34, 111‒118 (2018).
  52.  E. Porca, V. Jurado, P.M. Martin-Sanchez, B. Hermosin, F. Bastian, C. Alabouvette, and C. Saiz-Jimenez, “Aerobiology: An ecological indicator for early detection and control of fungal outbreaks in caves”, Ecol. Indic. 11(6), 1594‒1598 (2011).
  53.  P. Gutarowska, “Moulds in biodeterioration of technical materials”, Folia Biologica et Oecologica 10, 27‒39 (2014).
  54.  B. Zyska and Z. Żakowska. Mikrobiologia materiałów, Politechnika Łódzka, Łódź, 2005.
  55.  T.J. Berryman. “Fuel Quality and demand – an overview” in Microbiology of fuels, Ed. R.N. Smith, Institute of Petroleum, London, UK, 1987.
  56.  K. Schubert, J.Z. Groenewald, U. Braun, J. Dijksterhuis, M. Starink, C.F. Hill, P. Zalar, G.S. de Hoog, and P.W. Crous, “Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics”, Stud. Mycol. 58, 105‒156 (2007).
  57.  J. Israel Martínez-López, M. Mojica, C.A. Rodríguez, and H.R. Siller, “Xurography as a Rapid Fabrication Alternative for Point-of-Care Devices: Assessment of Passive Micromixers”, Sensors (Basel) 16(5), 705 (2016).
  58.  D. Witkowski, W. Kubicki, J.A. Dziuban, D. Jašíková, and A. Karczemska, “Micro-particle image velocimetry for imaging flows in passive microfluidic mixers”, Bull. Pol. Ac.: Tech. 25(3), 441–450 (2018).
  59.  A. Lamberti, S.L. Marasso, and M. Cocuzza, “PDMS membranes with tunable gas permeability for microfluidic applications”, RSC Adv. 4, 61415–61419 (2014).
  60.  K. Kamei, Y. Mashimo, and Y. Koyama, “3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients”, Biomed. Microdev. 17(2), 36 (2015).
  61.  P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchella, and K. Khoshmanesh, “Porous PDMS structures for the storage and release of aqueous solutions into fluidic environments”, Lab Chip 17, 2517‒2527 (2017).
  62.  A. Podwin, R. Walczak, and J.A. Dziuban, “A 3D printed membrane-based gas microflow regulator for on-chip cell culture”, Appl. Sci. 8(4), 579 (2018).
  63.  A. Podwin and J.A. Dziuban, “Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms”, J. Micromech. Microeng. 27(10), 104004 (2017).
  64.  A. Podwin, W. Kubicki, K. Adamski, R. Walczak, and J.A. Dziuban, “A step towards on-chip biochemical energy cascade of microorganisms: Carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip”, J. Phys.: Conf. Ser. 773(1), 012052 (2016).
  65.  K. Ozasa, J. Lee, S. Song, M. Hara, and M. Maeda, “Gas/liquid sensing via chemotaxis of euglena cells confined in an isolated micro- aquarium”, Lab Chip 13, 4033‒4039 (2013).
  66.  F.J.H. Hol and C. Dekker, “Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria”, Science 346 (6208), 1251821 (2014).
  67.  K. Nagy, Á. Ábrahám, J.E. Keymer, and P. Galajda, “Application of Microfluidics in Experimental Ecology: The Importance of Being Spatial”, Front. Microbiol. 9, 496 (2018)
  68.  A. Podwin, W. Kubicki, and J.A. Dziuban, “Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium”, Biomed. Microdev. 19(3), 63 (2017).
  69.  R. Walczak, P. Śniadek, J.A. Dziuban, J. Kluger, and A. Chełmońska-Soyta, “Supravital fluorometric apoptosis detection in a single mouse embryo using lab-on-a-chip”, Lab Chip 11, 3263‒3268 (2011).
  70.  A. Podwin, D. Lizanets, D. Przystupski, W. Kubicki, P. Śniadek, J. Kulbacka, A. Wymysłowski, R. Walczak, and J.A. Dziuban, “Lab-on- Chip Platform for Culturing and Dynamic Evaluation of Cells Development”, Micromachines 11(2), 196 (2020).
  71.  W. Wei, et al., “A numerical model for air concentration distribution in self-aerated open channel flows”, J. Hydrodynam. B. 27(3), 394‒402 (2015).
  72.  S. Agaoglu, et al., “The effect of pre-polymer/cross-linker storage on the elasticity and reliability of PDMS microfluidic devices”, Microfluid. Nanofluidics 21, 117 (2017).






DOI: 10.24425/bpasts.2020.136212


Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e136212