Details

Title

Effect of SiO2 flux on the depth of penetration, microstructure, texture and mechanical behavior of AA6063 T6 aluminum alloy using activated TIG welding

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences

Yearbook

2021

Volume

69

Issue

No. 1

Affiliation

Kumar, Rajiv : Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India ; Vettivel, S.C. : Department of Mechanical Engineering, Chandigarh College of Engineering and Technology (Degree Wing), Chandigarh, India ; Kumar Kansal, Harmesh : Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India

Authors

Keywords

aluminum alloy ; depth of penetration ; tensile strength ; texture

Divisions of PAS

Nauki Techniczne

Coverage

e136215

Bibliography

  1.  S. Jannet, P.K. Mathews, and R. Raja, “Comparative investigation of friction stir welding and fusion welding of 6061T6 – 5083 O aluminum alloy based on mechanical properties and microstructure”, Bull. Pol. Ac.: Tech. 62(4), 791‒795 (2014), doi: 10.2478/bpasts-2014-0086.
  2.  S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4”, J. Mater. Process. Technol. 206. 132–142 (2008), doi: 10.1016/j.jmatprotec.2007.12.008.
  3.  P. Mukhopadhyay, “Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys”, ISRN Metall. 2012, 165082 (2012), doi: 10.5402/2012/165082.
  4.  B. Choudhury and M. Chandrasekaran, “Investigation on welding characteristics of aerospace materials – A review”, Mater. Today Proc. 4, 7519–7526 (2017), doi: 10.1016/j.matpr.2017.07.083.
  5.  R.R. Ambriz and V. Mayagoitia, “Welding of Aluminum Alloys”, in Welding, Brazing and Soldering, pp. 722–739, ASM International, 2018. doi: 10.31399/asm.hb.v06.a0001436.
  6. [6]  P.J. Modenesi, “The chemistry of TIG weld bead formation”, Weld. Int. 29, 771–782 (2015), doi: 10.1080/09507116.2014.932990.
  7.  A.K. Singh, V. Dey, and R.N. Rai, “Techniques to improveweld penetration in TIG welding (A review)”, Mater. Today Proc. 4, 1252–1259 (2017), doi: 10.1016/j.matpr.2017.01.145.
  8.  R.S. Vidyarthy and D.K. Dwivedi, “Activating flux tungsten inert gas welding for enhanced weld penetration”, J. Manuf. Process. 22, 211–228 (2016), doi: 10.1016/j.jmapro.2016.03.012.
  9.  R.S. Vidyarthy and D.K. Dwivedi, “Microstructural and mechanical properties assessment of the P91 A-TIG weld joints”, J. Manuf. Process. 31, 523–535 (2018), doi: 10.1016/j.jmapro.2017.12.012.
  10.  K.D. Ramkumar, V. Varma, M. Prasad, N.D. Rajan, and N.S. Shanmugam, “Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds”, J. Mater. Process. Technol. 261, 233–241 (2018), doi: 10.1016/j.jmatprotec.2018.06.024.
  11.  H. Kumar and N.K. Singh, “Performance of activated TIG welding in 304 austenitic stainless steel welds”, Mater. Today Proc. 4, 9914–9918 (2017), doi: 10.1016/j.matpr.2017.06.293.
  12.  R.S. Vidyarthy, A. Kulkarni, and D.K. Dwivedi, “Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint”, Mater. Sci. Eng. A. 695, 249–257 (2017), doi: 10.1016/j.msea.2017.04.038.
  13.  E.R. Imam Fauzi, M.S. Che Jamil, Z. Samad, and P. Muangjunburee, “Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study”, Trans. Nonferrous Met. Soc. China (English Ed.) 27, 17–24 (2017), doi: 10.1016/S1003-6326(17)60003-7.
  14.  R.S. Coelho, A. Kostka, J.F. dos Santos, and A. Kaysser-Pyzalla, “Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure”, Mater. Sci. Eng. A. 556, 175–183 (2012), doi: 10.1016/j.msea.2012.06.076.
  15.  A.S. Zoeram, S.H.M. Anijdan, H.R. Jafarian, and T. Bhattacharjee, “Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior”, Mater. Sci. Eng. A. 687, 288–297, (2017). doi: 10.1016/j.msea.2017.01.071.
  16.  K.H. Dhandha and V.J. Badheka, “Effect of activatingfluxes on weld bead morphology of P91 steelbead-on-platewelds by flux assisted tungsteninert gas welding process”, J. Manuf. Process. 17, 48–57 (2015), doi: 10.1016/j.jmapro.2014.10.004.
  17.  A. Krajewski, W. Włosiński, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60(4), 841‒852 (2012), doi: 10.2478/v10175-012-0098-2.
  18.  H.S. Patil and S.N. Soman, “Effect of tool geometry and welding speed on mechanical properties and microstructure of friction stir welded joints of aluminum alloys AA6082-T6”, Arch. Mech. Eng. 61, 455‒468 (2014), doi: 10.2478/meceng-2014-0026.

Date

28.01.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2020.136215

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; No. 1; e136215
×