Details
Title
An active power filter based on a hybrid converter topology – Part 1Journal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
No. 1Authors
Affiliation
Gwóźdź, Michał : Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, Poland ; Ciepliński, Łukasz : Poznan University of Technology, Faculty of Control, Robotics and Electrical Engineering, Piotrowo 3A, 60-965 Poznan, PolandKeywords
shunt active power filter ; pulse-width modulation (PWM) ; sigma-delta modulator ; silicon carbideDivisions of PAS
Nauki TechniczneCoverage
e136218Bibliography
- B. Kroposki, C. Pink, R. DeBlasio, H. Thomas, M. Simões, and P. Sen, “Benefits of Power Electronic Interfaces for Distributed Energy Systems”, IEEE Trans. Energy Convers. 25, 901–908 (2010).
- M. Pasko, D. Buła, K. Dębowski, D. Grabowski, and M. Maciążek, “Selected methods for improving operating conditions of three-phase systems working in the presence of current and voltage deformation — Part I”, Arch. .Electr. Eng. 67, 591–602 (2018).
- A. Benchabira and M. Khiat, “A hybrid method for the optimal reactive power dispatch and the control of voltages in an electrical energy network”, Arch. Electr. Eng. 68, 535–551 (2019).
- A. Nami, J.L. Rodríguez Amenedo, S. Arnaltes Gómez, and M.Á. Cardiel Álvarez, “Active power filtering embedded in the frequency control of an offshore wind farm connected to a diode-rectifier-based HVDC link”, Energies 11, 2718 (2018).
- A.J. Christe, S. Negrashov, and P.M. Johnson, “Design, implementation, and evaluation of open power quality”, Energies 13, 4032 (2020).
- B. Lewczuk, G. Redlarski, A. Zak, N. Ziółkowska, B. Przybylska-Gornowicz, and M. Krawczuk, “Influence of Electric, Magnetic, and Electromagnetic Fields on the Circadian System: Current Stage of Knowledge”, in BioMed Research International 2014, 2014, pp. 1–13.
- M. Siwczyński and M. Jaraczewski, “Reactive compensator synthesis in time-domain”, Bull. Pol. Ac.: Tech. 60(1), 119–124 (2012).
- Y. Chen, Z. Huang, Z. Duan, P. Fu, G. Zhou, and L. Luo, “A four-winding inductive filtering transformer to enhance power quality in a high-voltage distribution network supplying nonlinear loads”, Energies 12, 2021 (2019).
- Y. Rozanov, S. Ryvkin, E. Chaplygin, and P. Voronin, Fundamentals of power electronics: operating principles, design, formulas, and applications, CRC Press, 2015.
- M. Rashid, Power Electronics Handbook, Elsevier Ltd.: Oxford, 2018.
- K. Shyu, M. Yang, Y. Chen, and Y. Lin, “Model Reference Adaptive Control Design for a Shunt Active-Power-Filter System”, IEEE Trans. Ind. Electron.55, 97–106 (2008).
- A. Kouzou, M. Mahmoudi, and M. Boucherit, “Evaluation of the Shunt Active Power Filter apparent power ratio using particle swarm optimization”, Arch. Control Sci. 20, 47–76 (2010).
- K. Mikołajuk and A. Toboła, “Average time–varying models of active power filters”, Prz. Elektrotechniczny 95, 53–55 (2010).
- M. Gwóźdź, “Power electronics active shunt filter with controlled dynamics”, Compel-Int. J. Comp. Math. Electr. Electron. Eng. 32, 1337–1344 (2013).
- S. Fryze, “Active, reactive, and apparent power in circuits with nonsinusoidal voltage and current”, Prz. Elektrotechniczny 13, 193–203 (1931).
- M. Artemenko, L. Batrak, and S. Polishchuk, “New definition formulas for apparent power and active current of three-phase power system”, Prz. Elektrotechniczny 95, 81–85 (2019).
- H. Akagi, “Modern active filters and traditional passive filters”, Bull. Pol. Ac.: Tech. 54(3), 255–269 (2006).
- H. Akagi, E. Watanabe, and M. Aredes, Instantaneous power theory and applications to power conditioning, IEEE Press, Hoboken: Piscataway, 2017.
- L. Czarnecki, “Effect of Supply Voltage Harmonics on IRP-Based Switching Compensator Control”, IEEE Trans. Power Electron. 24, 483–488 (2009).
- J. Vásárhelyi, M. Imecs, C. Szabó, I. Incze, and Á. Tihamér, “Managing transients generated by the reconfiguration process at the tandem inverter fed induction motor”, Proceedings of IEEE 7th International Conference on Intelligent Engineering Systems, 2003, pp. 388–393.
- K. Kaneko, J. Mitsuta, K. Matsuse, K. Sasagawa, Y. Abe, and L. Huang, “Analysis of dynamic variation on a combined control strategy for a five-level double converter”, Proceedings of Power Electronics Specialists Conference PESC ’05, 2005, pp. 885–891.
- M. Imecs, A. Trzynadlowski, I. Incze, and C. Szabo, “Vector Control Schemes for Tandem-Converter Fed Induction Motor Drives”, IEEE Trans. Power Electron. 20, 493–501 (2005).
- T. Morizane and N. Kimura, “Circulating current control of double converter system for wind power generation”, Proceedings of the 14th European Conference on Power Electronics and Applications (EPE 2011), 2011.
- A. Tomaszuk and A. Krupa, “High efficiency high step-up DC/ DC converters – a review”, Bull. Pol. Ac.: Tech. 59(4), 475–483 (2011).
- M. Gwóźdź, Ł. Ciepliński, and M. Krystkowiak, “Power supply with parallel reactive and distortion power compensation and tunable inductive filter — Part 1”, Bull. Pol. Ac.: Tech. 68(3), 401–408 (2020).
- X. Rui, L. Jing, L. Fuzhong, and W. Zhi, “The application on active noise cancellation — Research on the series-parallel compensated UPS converter”, International Symposium on Electromagnetic Compatibility EMC 2007, China, 2007, pp.138–141.
- L. Asiminoaei, E. Aeloiza, P. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters”, IEEE Trans. Ind. Electron. 55, 1175–1189 (2008).
- G. Eirea and S. Sanders, “Phase Current Unbalance Estimation in Multiphase Buck Converters”, IEEE Trans. Power Electron. 23, 137–143 (2008).
- M. Hirakawa, M. Nagano, Y. Watanabe, K. Ando, S. Nakatomi, S. Hashino, and T. Shimizu, “High power density interleaved dc/dc converter using a 3-phase integrated close-coupled inductor set aimed for electric vehicles”, Proceedings of Energy Conversion Congress and Exposition (ECCE) 2010, 2010, pp. 2451–2457.
- J. Iwaszkiewicz, P. Bogusławski, A. Krahel, and E. Łowiec, “Three-phase voltage outages compensator with cascaded multilevel converter”, Arch. Electr. Eng. 61, 325–336 (2012).
- J. Wu, H. Jou, P. Huang, and I. Chiu, “Current balancing control for an interleaved boost power converter”, Int. J. .Electron. 106, 1567–1582 (2019).
- M. Schetzen, Linear time-invariant systems, Wiley-IEEE Press, 2003.
- M. Gwóźdź, “Stability of discrete time systems on base of generalized sampling expansion”, Elektryka, Silesian University of Technology 57, 29–40 (2011).
- J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, Dover Publications, 2013.
- Y. Hasegawa, Control Problems of Discrete-Time Dynamical Systems, Springer, 2015.
- W. Kester, The Data Conversion Handbook, Analog Devices Inc, Newnes, 2005.
- J. de la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey”, IEEE Trans. Circuits Syst. I-Regul. Pap. 58, 1–21 (2011).
- A. Jain, M. Venkatesan, and S. Pavan, “Analysis and Design of a High Speed Continuous-time Delta Sigma Modulator Using the Assisted Opamp Technique”, IEEE J. Solid-State Circuit. 47, 1615–1625 (2012).
- B. Razavi, “The Delta-Sigma Modulator [A Circuit for All Seasons]”, IEEE Solid-State Circuit. Mag. 8, 10–15 (2016).
- M. Gwozdz and D. Matecki, “Power electronics inverter with a modified sigma-delta modulator and an output stage based on GaN E-HEMTs”, in Advanced Control of Electrical Drives and Power Electronic Converters, pp. 327–338 Springer, London, 2017.
- J. Chen, Y. Hwang, C. Jheng, Y. Ku, and C. Yu, “A Low-Electromagnetic-Interference Buck Converter with Continuous-Time Delta- Sigma-Modulation and Burst-Mode Techniques”, IEEE Trans. Ind. Electron. 65, 6860–6869 (2018).
- D. Gerber, C. Le, M. Kline, P. Kinget, and S. Sanders, “An Integrated Multilevel Converter with Sigma–Delta Control for LED Lighting”, IEEE Trans. Power Electron. 34, 3030–3040 (2019).
- B. Jacob and M. Baiju, “Space-Vector-Quantized Dithered Sigma–Delta Modulator for Reducing the Harmonic Noise in Multilevel Converters”, IEEE Trans. Ind. Electron. 62, 2064–2072 (2015).
- C. Chang, F. Wu, and Y. Chen, “Modularized Bidirectional Grid-Connected Inverter with Constant-Frequency Asynchronous Sigma-Delta Modulation”, IEEE Trans. Ind. Electron. 59, 4088–4100 (2012).
- B. Wilamowski and J. Irwin, Fundamentals of Industrial Electronics, CRC Press: London, United Kingdom, 2017.
- Y. Kang, T. Ge, H. He, and J. Chang, “A review of audio class D amplifiers”, 2016 International Symposium on Integrated Circuits (ISIC), Singapore, 12–14 (2016).
- X. Jiang, “Fundamentals of Audio Class D Amplifier Design: A Review of Schemes and Architectures”, IEEE Solid-State Circuits Magazine 9, 14–25 (2017).
- G. Scott, “Design Considerations for Class-D Audio Power Amplifiers”, in Application Report (SLOA242A), Texas Instruments, 2019.
- A. Chatterjee, H. Nobahari, and P. Siarry, Advances in Heuristic Signal Processing and Applications, Springer: Berlin, Heidelberg, 2013.
- H. Zhang, C. Qin, and Y. Luo, “Neural-Network-Based Constrained Optimal Control Scheme for Discrete-Time Switched Nonlinear System Using Dual Heuristic Programming”, IEEE Trans. Autom. Sci. Eng. 11, 839–849 (2014).
- R. Kirlin, C. Lascu, and A. Trzynadlowski, “Shaping the Noise Spectrum in Power Electronic Converters”, IEEE Trans. Ind. Electron. 58, 2780–2788 (2011).
- M. Auer and T. Karaca, “Spread spectrum techniques for Class-D audio amplifiers to reduce EMI”, e & i Elektrotechnik und Informationstechnik 133, 43–47 (2016).
- MITSUBISHI ELECTRIC Semiconductors & Devices: Power Modules for Power Applications | Power supply / UPS. [Online]. https:// www.mitsubishielectric.com/semiconductors/application/ups/index.html (accessed Aug. 11 2020).
- Silicon Carbide CoolSiC™ MOSFET Modules – Infineon Technologies. [Online] https://www.infineon.com/cms/en/product/power/mosfet/ silicon-carbide/modules/ (accessed Aug. 11 2020).