Tytuł artykułu

Sn-Pd-Ni Electroplating on Bi2Te3-Based Thermoelectric Elements for Direct Thermocompression Bonding and Creation of a Reliable Bonding Interface

Tytuł czasopisma

Archives of Metallurgy and Materials




vol. 66


No 4


Kang, Seok Jun : Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea ; Bae, Sung Hwa : Kyushu University, Graduate School of Engineering, Department of Materials Process Engineering, Fukuoka, Japan ; Son, Injoon : Kyungpook National University, Department of Materials Science and Metallurgical Engineering, Daegu, Republic of Korea


Słowa kluczowe

Tin Electroplating ; Thermoelectric Module ; Thermocompression Bonding ; Bi2Te3 ; Direct Bonding

Wydział PAN

Nauki Techniczne




Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Commitee on Metallurgy of Polish Academy of Sciences


[1] L.D. Hicks, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47, 12727-12731 (1993).
[2] R .J. Mehta, Y. Zhang, C. Karthik, B. Singh, R.W. Siegel, T. Borca- Tascuic, G. Ramanath, Nature Mater. 11, 233 (2012).
[3] K .T. Kim, I.J. Son, G.H. Ha, Synthesis and thermoelectric properties of carbon nanotube-dispersed Bi2Te3 matrix composite powders by chemical routes, J. Korean Powder Metall. Inst. 20, 345-349 (2013).
[4] Y. Gelbstein, Z. Dashevsky, M.P. Dariel, High performance n-type PbTe-based materials for thermoelectric applications, Physica B 363, 196-205 (2005).
[5] D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287, 1024-1027 (2000).
[6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Sci. Express 320, 634-638 (2008).
[7] C. Wood, Materials for thermoelectric energy conversion, Rep. Prog. Phys. 51, 459-539 (1988).
[8] G .J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7, 105-114 (2008).
[9] H. Wada, K. Takahashi, T. Nishizaka, Electroless nickel plating to Bi-Te sintered alloy and its properties, J. Mater. Sci. Lett. 9, 810-812 (1990).
[10] S.H. Bae, H.J., Jo, I. Son, H.S. Sohn, K.T. Kim, Wet Etching Method for Electroless Ni-P Plating of Bi-Te Thermoelectric Element, J. Nanosci. Nanotechnol. 19, 1749-1754 (2019).
[11] S. Han, I. Son, K.T. Kim, Effect of pd-p layer on the bonding strength of bi-te thermoelectric elements, Arch. Metall. Mater. 64, 963-968 (2019).
[12] J. Yoon, S.H. Bae, H.S. Sohn, I. Son, K.T. Kim, Y.W. Ju, A Novel Fabrication Method of Bi2Te3-Based Thermoelectric Modules by Indium Electroplating and Thermocompression Bonding, J. Nanosci. Nanotechnol. 18, 6515-6519 (2018).
[13] J. Yoon, S.H. Bae, H.S. Sohn, I. Son, K. Park, S. Cho, K.T. Kim, Fabrication of a Bi2Te3-Based Thermoelectric Module Using Tin Electroplating and Thermocompression Bonding. J. Nanosci. Nanotechnol. 19, 1738-1742 (2019).
[14] S. Chen, C. Chiu, Unusual cruciform pattern interfacial reactions in Sn/Te couples, Scr. Mater. 56, 97-99 (2007).
[15] P.A. Villars, three-dimensional structural stability diagram for 998 binary AB intermetallic compounds, J. Less-Common Met. 92, 215-238 (1983).
[16] Y. Lan, D. Wang, G. Chen, Z. Ren, Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials, Appl. Phys. Lett. 92, 101910 (2008).
[17] W .P. Lin, D.E. Wesolowski, C.C. Lee, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, J. Mater. Sci. Mater. Electron. 22, 1313-1320 (2011).






DOI: 10.24425/amm.2021.136406 ; ISSN 1733-3490


Archives of Metallurgy and Materials