Szczegóły

Tytuł artykułu

Microstructures and Microwave-Absorbing Properties of ZnO Smoke from Zinc Leach Residue Treated by Carbothermal Reduction

Tytuł czasopisma

Archives of Metallurgy and Materials

Rocznik

2021

Wolumin

vol. 66

Numer

No 4

Autorzy

Afiliacje

Ma, Zhiwei : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China ; Wang, Sheng : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China ; Du, Xueyan : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China ; Zhang, Ji : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China ; Zhao, Ruifeng : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China ; Zhang, Shengquan : Lanzhou University of Technology, State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China

Słowa kluczowe

Zinc leach residue ; Carbothermal reduction ; ZnO smoke ; Microwave-absorbing properties

Wydział PAN

Nauki Techniczne

Zakres

1163-1170

Wydawca

Institute of Metallurgy and Materials Science of Polish Academy of Sciences ; Committee of Materials Engineering and Metallurgy of Polish Academy of Sciences

Bibliografia

[1] M. Li, B. Peng, L.Y. Chai, Technological Mineralogy and Environmental Activity of Zinc Leaching Residue from Zinc Hydrometallurgical Process, T. Nonfer. Metal. Soc. 23 (5), 1480-1488 (2013). DOI: https://doi.org/10.1016/S1003-6326(13)62620-5
[2] G .M. Jiang, B. Peng, Y.J. Liang, Recovery of Valuable Metals from Zinc Leaching Residue by Sulfate Roasting and Water Leaching, T. Nonfer. Metal. Soc. 27, 1180-1187 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60138-9
[3] H . Yan, L.Y. Chai, B. Peng, A Novel Method to Recover Zinc and Iron from Zinc Leaching Residue, Mine Eng. 55, 103-110 (2014). DOI: https://doi.org/10.1016/j.mineng.2013.09.015
[4] W . Luo, Q. Feng, L. Ou, Kinetics of Saprolitic Laterite Leaching by Sulphuric Acid at Atmospheric Pressure, Mine Eng. 23 (6), 458- 462 (2010). DOI: https://doi.org/10.1016/j.mineng.2009.10.006
[5] L. Tang, C.B. Tang, J. Xiao, A Cleaner Process for Lead Recovery from Lead-containing Hazardous Solid Waste and Zinc Leaching Residue Via Reducing-matting Smelting, J. Clean Prod. 241, 1-8 (2019). DOI: https://doi.org/10.1016/j.jclepro.2019.118328
[6] A . Özverdi, M. Erdem, Environmental Risk Assessment and Stabilization/Solidification of Zinc Extraction Residue: I. Environmental Risk Assessment, Hydrometallurgy 100, 103-109 (2010). DOI: https://doi.org/10.1016/j.hydromet.2009.10.011
[7] J.M. Steer, A.J. Giffiths, Investigation of Carboxylic Acids and Non-aqueous Solvents for the Selective Leaching of Zinc from Blast Furnace Dust Slurry, Hydrometallurgy 140, 34-4 1(2013). DOI: https://doi.org/10.1016/j.hydromet.2013.08.011
[8] P. Xing, B.Z. Ma, P. Zeng, Deep Cleaning of a Metallurgical Zinc Leaching Residue and Recovery of Valuable Metals, Int. J. Min. Met. Mater. 24 (11), 1217-1227 (2017). DOI: https://doi.org/10.1007/s12613-017-1514-2
[9] S. Wang, Y.Y. Shen, S.Q. Zhang. Leaching of High Arsenic Content Dust and a New Process for the Preparation of Copper Arsenate, Arch. Metall. Mater. 63 (3), 1167-1172 (2018). DOI: https://doi.org/10.24425/123789
[10] X.B. Li, C. Wei, Z.G. Deng, Extraction and Separation of Indium and Copper from Zinc Residue Leach Liquor by Solvent Extraction, Sep. Purif. Technol. 156, 348-355 (2015). DOI: https://doi.org/10.1006/j.seppur.2015.10.021
[11] O .N. Kononova, A.G. Kholmogorov, N.V. Danilenko, Recovery of Silver from Thiosulfate and Thiocyanante Leach Solutions by Adsorption on Anion Exchange Resins and Activated Carbon, Hydrometallurgy 88, 189-195 (2007). DOI: https://doi.org/10.1016/j.hydromet.2017.03.012
[12] G .G. Mei, D.R. Wang, J.Y. Zhou, Zinc Hydrometallurgy [M], Central South University of Technology Press, 2001 China, Changsha.
[13] G . Yu, N. Peng, L. Zhou, Selective Reduction Process of Zinc Ferrite and its Application in Treatment of Zinc Leaching Residues. T. Nonfer. Metal. Soc. 55, 103-110 (2014). DOI: https://doi.org/10.1016/S1003-6326(15)63899-7
[14] I . M. Alibe, K.A. Matori, H.A.A. Sidek, The Influence of Calcination Temperature on Structural and Optical Properties of ZnOSiO2 Nanocomposite by Simple Thermal Treatment Route, Arch. Metall. Mater. 63 (2), 539-545 (2018). DOI: https://doi.org/10.24425/118972
[15] M.H. Tang, M.Z. Chen, X. Zhu, Elimination of 180° Non-uniqueness of ZnO Diffraction Pattern, Anal. Test. Technol. Instrum. 23 (2), 130-134 (2017). DOI: https://doi.org/10.16495/j.1006-3757.2017.02.012
[16] G .Z. Liu, Z.D. Wang, Z.G. Wan, Study on Microwave Synthesis of ZnO Microrods, J. Hubei. Univ. Technol. 22 (5), 5-7 (2007).
[17] I .M. Alibe, K.A. Matori, E. Saion, The Influence of Calcination Temperature on Structural and Pptical Properties of ZnO Nanoparticles Via Simple Polymer Synthesis Route, Sci. Sinter. 49 (3), 263-275 (2017). DOI: https://doi.org/10.2298/SOS1703263A
[18] I .M. Alibe, K.A. Matori, H.A.A. Sidek, Effects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method, Molecules 23 (4), 1-18 (2018). DOI: https://doi.org/10.3390/molecules23040873
[19] S. Geetha, K.K.K. Satheesh, C.R.K. Rao, EMI Shielding: Methods and Materials. A Review. J. Appl. Polym. Sci. 112 (4), 2073-2086 (2010). DOI: https://doi.org/10.1002/app.29812
[20] L.L. Yan, M. Zhang, S.C. Zhao, Wire-in-tube ZnO@carbon by Molecular Layer Deposition: Accurately Tunable Electromagnetic Parameters and Remarkable Wave Absorption, Chem. Eng. J. 382, 1-11 (2020). DOI: https://doi.org/10.1016/j.cej.2019.122860
[21] X. Meng, Y.Q. Liu, G.H. Han, Three-dimensional (Fe3O4/ ZnO)@C Double-core@shell Porous Nanocomposites with Enhanced Broadband Wave Absorption, Carbon 162, 356-364 (2020). DOI: https://doi.org/10.1016/j.carbon.2020.02.035
[22] L.Z. Zhao, S.X. Hu, S.W. Li, Absorption Principle and Research Progress of Absorbing Materials, Modern Defense. Technol. 35 (1), 27-31 (2007).
[23] X.J. Zhang, G.S. Wang, Y.Z. Wei, Polymer-composite with High Dielectric Constant and Enhanced Absorption Properties Based on Grapheme-CuS Nanocomposites and Polyvinylidene Fluoride, J. Mater. Chem. A 1 (39), 12115-12122 (2013). DOI: https://doi.org/10.1039/c3ta12451g

Data

2021.12.28

Typ

Article

Identyfikator

DOI: 10.24425/amm.2021.136437 ; e-ISSN 2300-1909

Źródło

Archives of Metallurgy and Materials
×