Szczegóły

Tytuł artykułu

Influence of Chloride Salinity on Cadmium uptake by Nicotiana tabacum in a Rhizofiltration System

Tytuł czasopisma

Archives of Environmental Protection

Rocznik

2021

Wolumin

vol. 47

Numer

No 1

Afiliacje

Lopez-Chuken, Ulrico Javier : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Barceló-Quintal, Icela Dagmar : Basic Science and Engineering Division, Metropolitan Autonomus University – Azcapotzalco Unit, Mexico ; Ramirez-Lara, Evangelina : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Cantu-Cardenas, Maria Elena : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Villarreal-Chiu, Juan Francisco : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Beltran-Rocha, Julio Cesar : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Guajardo-Barbosa, Claudio : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Castillo-Zacarias, Carlos Jesus : Autonomus University of Nuevo Leon, (Universidad Autonoma de Nuevo León), Biotechnology and Nanotoxicology Research Center (CIBYN), Mexico ; Castillo-Zacarias, Carlos Jesus : Monterrey Technological Institute of Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Mexico ; Gomez-Salazar, Sergio : Exact Sciences and Engineering University Center (CUCEI).University of Guadalajara, Mexico ; Orozco-Guareno, Eulogio : Exact Sciences and Engineering University Center (CUCEI).University of Guadalajara, Mexico

Autorzy

Słowa kluczowe

cadmium ; Chloride-complexes ; root surface area ; leaf surface area ; hydroponics ; Biotic Ligand Model

Wydział PAN

Nauki Techniczne

Zakres

35-40

Wydawca

Polish Academy of Sciences

Bibliografia

1. Berkelaar, E., & Hale, B. (2000). The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars, Canadian Journal of Botany, 78, 3, pp. 381-387. DOI: 10.1139/b00-015
2. Berkelaar, E., & Hale, B. (2003). Cadmium accumulation by durum wheat roots in ligand buffered hydroponic culture: uptake of Cd ligand complexes or enhanced diffusion? Canadian Journal of Botany, 81, 7, pp. 755-763. DOI: 10.1139/b03-061
3. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sedime nt Contamination: An International Journal, 23, (6), 628-640.
4. Candelario-Torres, M.F. (2014). Rhizofiltration of metal polluted effluents by Nicotiana tabacum, M.Sc. diss., Universidad Autonoma de Nuevo Leon (in Spanish), pp. 1-63.
5. Durand, T.C., Hausman, J.F., Carpin S., Alberic, P., Baillif, P., Label, P. & Morabito, D. (2010). Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba, Biologia Plantarum, 54, 1, pp. 191-194. https://doi.org/10.1007/s10535-010-0033-z
6. Elouear, Z., Bouhamed, F., & Bouzid, J. (2014). Evaluation of different amendments to stabilize cadmium, zinc, and copper in a contaminated soil: Influence on metal leaching and phytoavailability. Soil and Sediment Contamination: An International Journal , 23, 6, pp. 628-640. https://doi.org/10.1080/15320383.2014.857640
7. Erdem, H., Kinay, A., Öztürk, M. & Tutuş, Y. (2012). Effect of cadmium stress on growth and mineral composition of two tobacco cultivars, Journal of Food, Agriculture and Environment, 10, 1, pp. 965-969.
8. Garg, N., & Chandel, S. (2012). Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses, Journal of Plant Growth Regulation, 31, 3, pp. 292-308. DOI: 10.1007/s00344-011-9239-3
9. Green-Ruiz, C., Rodriguez-Tirado, V. & Gomez-Gil, B. (2008). Cadmium and zinc removal from aqueous solutions by Bacillus jeotgali: pH, salinity and temperature effects, Bioresoure Technology, 99, 9, pp. 3864-3870. DOI: 10.1016/j.biortech.2007.06.047
10. He, J.G., Liu, F., Han, B.P., Zhao, B.W. & Liu, J. (2011a). Treatment of tannery wastewater with salt tolerant bacteria basing on different culture mediums, Advanced Materials Research , 403-408, 1, pp. 625-633. DOI: 10.4028/www.scientific.net/AMR.403-408.625
11. He, J., Qin, J., Long, L., Ma, Y., Li, H., Li, K., & Luo, Z.B. (2011b). Net cadmium flux and accumulation reveal tissue‐specific oxidative stress and detoxification in Populus × canescens, Physiologia Plantarum, 143, 1, pp. 50-63. DOI: 10.1111/j.1399-3054.2011.01487.x
12. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., & Luo, Z.B. (2013). A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens, Plant Physiology, 162, 1, pp. 424-439. DOI: 10.1104/pp.113.215681
13. He, J., Li, H., Ma, C., Zhang, Y., Polle, A., Rennenberg, H. & Luo, Z.B. 2015. Overexpression of bacterial γ‐glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar, New Phytologist, 205, 1, pp. 240-254. DOI: 10.1111/nph.13013
14. Hetherington, A. M., & Woodward, F. I. (2003). The role of stomata in sensing and driving environmental change. Nature, 424, 6951, pp. 901-908. https://doi.org/10.1038/nature01843
15. Li, X., Ding, F., Lo, P. & Sin, S. (2002). Electrochemical disinfection of saline wastewater effluent, Journal of Environmental Engineering, 128, 8, pp. 697-704. DOI: 10.1061/(ASCE)0733-9372(2002)128:8(697)
16. Lin, B., Gao, H., & Lai, H. (2016). Spatial Characterization of Arsenic, Cadmium, and Lead Concentrations in Tobacco Leaves and Soil, Analytical Letters, 49, 10, pp. 1622-1630. DOI: 10.1080/00032719.2015.1113419
17. López-Chuken, U.J. & Young, S.D. (2005). Plant Screening of Halophyte Species for Cadmium Phytoremediation, Zeitschrift für Naturforschung C, 60, 3-4, pp. 236-243. PMID:15948589
18. López-Chuken, U.J. & Young, S.D. (2010). Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd2+ ion activity, Journal of Environmental Sciences, 22, 7, pp. 1080-1085. DOI: 10.1016/S1001-0742(09)60220-5
19. López-Chuken, U.J., Young, S.D. & Guzman-Mar, J.L. (2010). Evaluating a ´biotic ligand model´ applied to chloride-enhanced Cd uptake by Brassica juncea from nutrient solution at constant Cd2+ activity, Environmental Technology, 31, 3, pp. 307-318. DOI: 10.1080/09593330903470685
20. López-Chuken, U.J., López-Domínguez, U., Parra-Saldivar, R., Moreno, E., Hinojosa, L., Guzmán-Mar, J.L. & Olivares-Sáenz, E. (2012). Implications of chloride-enhanced Cd uptake in (saline) agriculture: modeling Cd uptake by maize and tobacco, International Journal of Environmental Science and Technology, 9, 1, pp. 69-77. DOI: 10.1007/s13762-011-0018-2
21. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M. & Wagner, G.J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Advances in Agronomy, 83, 1, pp. 111-118. DOI: 10.1016/S0065-2113(04)83003-7
22. Pandey, S.K. & Singh, H. (2011). A Simple, Cost-Effective Method for Leaf Area Estimation, Journal of Botany, 2011, pp. 1-6. DOI: 10.1155/2011/658240
23. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, The Plant Journal, 32, 4, pp. 539-548. DOI: 10.1046/j.1365-313X.2002.01442.x
24. Sas-Nowosielska, A., Kucharski, R., Małkowski, E., Pogrzeba, M., Kuperberg, J. & Kryński, K. (2004). Phytoextraction crop disposal--an unsolved problem, Environmental Pollution, 128, 3, pp. 373-379. DOI: 10.1016/j.envpol.2003.09.012
25. Tipping, E., Rey-Castro, C., Bryan, S.E. & Hamilton-Taylor, J. (2002). “Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation, Geochimoca et Cosmochimica Acta, 66, 18, pp. 3211-3224. DOI: 10.1016/S0016-7037(02)00930-4
26. United Nations. (2013). “The Eight Millenium Development Goals.” Accesed 29 February 2016. https://www.un.org/millenniumgoals/bkgd.shtml
27. Wang, X., Cheng, S., Zhang, X., Li, X. &. Logan, B.E. (2005). Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs), International Journal of Hydrogen Energy, 36, 21, pp. 13900-13906. DOI: 10.1016/j.ijhydene.2011.03.052
28. Wani, P.A., Khan, M.S. & Zaidi, A. (2005). Toxic effects of heavy metals on germination and physiological processes of plants.” [In:] Toxicity of heavy metals to legumes and bioremediation, edited by Zaidi, A., Wani, P.A. & Khan M.S. Springer, Netherlands, pp. 45-66. DOI: 10.1007/978-3-7091-0730-0
29. Weggler-Beaton, K., McLaughlin, M.J. & Graham, R.D. (2000). Salinity increases cadmium uptake by wheat and Swiss chard from soil amended with biosolids, Australian Journal of Soil Research, 38, 1, pp. 37-45. DOI: 10.1071/SR99028
30. Xu, Z. & Zhou, G. (2008). Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass, Journal of Experimental Botany, 59, 12, pp. 3317-3325.DOI: 10.1093/jxb/ern185
31. Yadav, A. K., Pathak, B. & Fulekar, M.H. (2015). Rhizofiltration of Heavy Metals (Cadmium, Lead and Zinc) From Fly Ash Leachates Using Water Hyacinth (Eichhornia crassipes), International Journal of Environment, 4, 1, pp. 179-196. DOI: 10.3126/ije.v4i1.12187

Data

2021.03.08

Typ

Article

Identyfikator

DOI: 10.24425/aep.2021.136446 ; ISSN 2083-4772 ; eISSN 2083-4810

Źródło

Archives of Environmental Protection; 2021; vol. 47; No 1; 35-40

Polityka Open Access


×