Tytuł artykułu

Probability distribution functions for service loads of frame scaffoldings

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences








Błazik-Borowa, Ewa : Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland ; Pieńko, Michał : Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland ; Szer, Iwona : Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz University of Technology, Politechniki 6, 90-924 Łódz, Poland ; Hoła, Bożena : Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland ; Czarnocki, Krzysztof : Faculty of Management, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland


Słowa kluczowe

scaffoldings ; service load ; extreme events ; probability distribution function ; safety

Wydział PAN

Nauki Techniczne




  1.  R.I. Harris and N.J. Cook, “The parent wind speed distribution: Why Weibull?”, J. Wind Eng. Ind. Aerodyn. 131, 72‒87 (2014).
  2.  T.M. Lystad, A. Fenercib, and O.Øiseth, “Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design”, J. Wind Eng. Ind. Aerodyn. 179, 558‒573 (2018).
  3.  J.A. Żurański, Effects of the climatic and topographic conditions on wind loads on building structures, Prace Naukowe Instytutu Techniki Budowlanej, Warsaw, 2005.
  4.  J.A. Żurański and A. Sobolewski, Snow loads in Poland in designing and diagnostics of structures, Prace Naukowe Instytutu Techniki Budowlanej, Warsaw, 2016.
  5.  P. Croce, P. Formichi, F. Landi, P. Mercogliano, E. Bucchignani, A. Dosio, and S. Dimova, “The snow load in Europe and the climate change”, Clim. Risk Manag. 20, 138‒154 (2018).
  6.  J. Blanchet, C. Marty, and M. Lehning, “Extreme value statistics of snowfall in the Swiss Alpine region”, Water Resour. Res. 45(5), W05424 (2009).
  7.  B. Ellingwood, T.V. Galambos, J.G. MacGregor, and C.A. Cornell, Development of a probability based load criterion for American National Standard A58, NBS Special Report 577, U.S. Department of Commerce, National Bureau of Standards, 1980.
  8.  R.B. Corotis and V.A. Doshi, “Probability models for live-load survey results”, J. Struct. Div. 103(6), 1257‒1274 (1977).
  9.  R.B. Corotis and V. Jaria, “Stochastic nature of building live loads”, J. Struct. Div. 105(3), 493510 (1979).
  10.  P.L. Chalk and R.B. Corotis, “Probability model for design live loads”, J. Struct. Div. 106(10), 2017‒2033 (1980).
  11.  A.S. Nowak and A.M. Rakoczy, “Uncertainties in the building process”, Bull. Pol. Acad. Sci. Tech. Sci. 61(1), 129‒135 (2013).
  12.  M.G. Stewart, “Optimization of serviceability load combinations for structural steel beam design”, Struct. Saf. 18(2/3), 225‒238 (1996).
  13.  V. Kamjoo and C.D. Eamon, “Reliability-based design optimization of a vehicular live load model”, Eng. Struct. 168, 799‒808 (2018).
  14.  Y. Liu, L. Liu, B. Stratman, and S. Mahadevan, “Multiaxial fatigue reliability analysis of railroad wheels”, Reliab. Eng. Syst. Saf. 93(3), 456‒467 (2008).
  15.  F. Schmidt, B. Jacob, and F. Domprobst, “Investigation of truck weights and dimensions using WIM data”, Transp. Res. Procedia 14, 811‒819 (2016).
  16.  A.S. Nowak, “System reliability models for bridge structures”, Bull. Pol. Acad. Sci. Tech. Sci. 52(4), 321‒328 (2004).
  17.  J. Bojórquez, S.E. Ruiz, B. Ellingwood, A. Reyes-Salazar, and E. Bojórquez, “Reliability-based optimal load factors for seismic design of buildings”, Eng. Struct. 151, 527‒539 (2017).
  18.  D. Sun, B. Chen, and S. Sun, “Study based on bridge health monitoring system on multihazard load combinations of earthquake and truck loads for bridge design in the southeast coastal areas of China”, Shock Vib., 829380, 1‒12 (2015).
  19.  M.G. Stewart, “Reliability-based load factor design model for explosive blast loading”, Struct. Saf. 71, 13‒23 (2018).
  20.  M.G. Stewart, M.D. Netherton, Y. Shi, M. Grant, and J. Mueller, “Probabilistic terrorism risk assessment and risk acceptability for infrastructure protection”, Aust. J. of Struct. Eng. 13(1), 1‒17 (2012).
  21.  EN 12811-1:2003. Temporary works equipment – Part 1: Scaffolds – Performance requirements and general design. European Committee for Standardization, Brussels, 2003.
  22.  AS/NZS 1576.1. Scaffolding. Part 1: General requirements, Council of Standards Australia and Council of Standards New Zealand, Sydney, 2010.
  23.  29 CFR 1926. Safety and health regulations for construction. Scaffold Specifications, Electronic Code of Federal Regulations, https:// (accesed April 2021).
  24.  P. Jamińska-Gadomska, J. Bęc, T. Lipecki, and A. Robak, “Verification of the façade scaffolding computer model”, Arch. Civ. Eng. 64 (1), 41‒53 (2018).
  25.  E. Błazik-Borowa, Loads and actions on scaffolding as engineering structures, Lublin University of Technology, Lublin, 2018, [in Polish].
  26.  H. Bojar, F. Silveira, M. Rebelo, E. Czarnocka, and K. Czarnocki, “Health behaviours in scaffold use risk assessment model – SURAM”, Ann Agric Environ Med. 26(1), 138‒142 (2019).
  27.  M. Jabłoński, I. Szer, and J. Szer, “Probability of occurrence of health and safety risks on scaffolding caused by noise exposure”, J. Civ. Eng. Manag. 24(6), 437‒443 (2018).
  28.  T. Lipecki, P. Jamińska-Gadomska, J. Bęc, and E. Błazik-Borowa, “Façade scaffolding behavior under wind action”, Arch. Civ. Mech. Eng. 20, 27 (2020).
  29.  M. Pieńko, A. Robak, E. Błazik-Borowa, and J. Szer, “Safety conditions analysis of scaffolding on construction sites”, Int. J. Civ. Env. Eng. 12(2), 72‒77 (2018).
  30.  I. Szer, E. Błazik-Borowa, and J. Szer, “The influence of environmental factors on employee comfort based on an example of location temperature”, Arch. Civ. Eng. 63(3), 163–174 (2017).
  31.  B. Hoła and T. Nowobilski, “Analysis of the influence of socio-economic factors on occupational safety in the construction industry”, Sustain. 11, 4469 (2019).
  32.  E. Castillo, A.S. Hadi, N. Balakrishnan, and J.M. Sarabia, Extreme value and related models with applications in engineering and science, John Wiley & Sons, New Jersey, 2005.
  33.  M. Nagode and M. Fajdiga, “The influence of variable operating conditions upon the general multi-modal Weibull distribution”, Reliab. Eng. Syst. Saf. 64, 383‒389 (1999).
  34.  A.S. Nowak and K.R. Collins, Reliability of structures, Taylor & Francis Group, New York, 2013.
  35.  D. Pekasiewicz, “Analysis of chosen estimation methods of maximum statistic limit distribution parameters”, Quant. Meth. Econom. 16(4), 75‒84 (2015), [in Polish].
  36.  E. Błazik-Borowa, J. Szer, A. Borowa, A. Robak, and M. Pieńko, “Modelling of load-displacement curves obtained from scaffold components tests”, Bull. Pol. Acad. Sci. Tech. Sci. 67(2), 317‒327 (2019).
  37.  M.G. Stewart, “Effect of construction and service loads on reliability of existing RC buildings”, J. Str. Eng. 127(10), 1232‒1235 (2001).
  38.  Construction activity (Ruch Budowlany), General Office of Building Control,, (accesed November 2020), [in Polish].






DOI: 10.24425/bpasts.2021.136734 ; ISSN 2300-1917


Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136734