Analysis of mass transfer in marine engine with prechamber combustion spark ignition system

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences








Pielecha, Ireneusz : Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznan, Poland



marine engine ; prechamber combustion spark ignition ; combustion process modeling ; combustion thermodynamics

Divisions of PAS

Nauki Techniczne




  1.  P. Tarnawski and W. Ostapski, “Pulse powered turbine engine concept – numerical analysis of influence of different valve timing concepts on thermodynamic performance”, Bull. Pol. Acad. Sci. Tech. Sci. 66(3), 373‒382 (2018), doi: 10.24425/123444.
  2.  N. Gombosuren, O. Yoshifumi, and A. Hiroyuki, “A charge possibility of an unfueled prechamber and its fluctuating phenomenon for the spark ignited engine”, Energies 13(2), 303 (2020), doi: 10.3390/en13020303.
  3.  M. Günther (ed.), Ignition Systems for Gasoline Engines, 4th International Conference. Verlag expert, Berlin, 2018. doi: 10.5445/ IR/1000088324.
  4.  A. Shah, “Improving the efficiency of gas engines using pre-chamber ignition”, PhD Thesis, Lund University, 2015.
  5.  P. Hlaing, M.E. Marquez, V.S.B. Shankar, E. Cenkar, M.B. Houidi, and B. Johansson, “A study of lean burn pre-chamber concept in a heavy duty engine”, SAE Tech. Paper 2019‒24‒0107 (2019), doi: 10.4271/2019-24-0107.
  6.  A. Jamrozik and W. Tutak, “Theoretical analysis of air-fuel mixture formation in the combustion chambers of the gas engine with two- stage combustion system”, Bull. Pol. Acad. Sci. Tech. Sci., 62(4), 779‒790 (2014), doi: 10.2478/bpasts-2014-0085.
  7.  J. Benajes, R. Novella, J. Gomez-Soriano, P.J. Martinez-Hernandiz, C. Libert, and M. Dabiri, “Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines”, Appl. Energ. 248, 576‒588 (2019), doi: 10.1016/j. apenergy.2019.04.131.
  8.  A. Shah, P. Tunestal, and B. Johansson, “Effect of pre-chamber volume and nozzle diameter on pre-chamber ignition in heavy duty natural gas engines”, SAE Tech. Paper 2015‒01‒0867 (2015), doi: 10.4271/2015-01-0867.
  9.  W. Attard, N. Fraser, P. Parsons, and E. Toulson, “A turbulent jet ignition pre-chamber combustion system for large fuel economy improvements in a modern vehicle powertrain”, SAE Int. J. Engines 3(2), 20‒37 (2010), doi: 10.4271/2010-01-1457.
  10.  I. Pielecha, K. Wisłocki, W. Cieślik, and Ł. Fiedkiewicz, “Prechamber selection for a two stage turbulent jet ignition of lean air-gas mixtures for better economy and emission”, 17th International Conference Heat Transfer and Renewable Sources of Energy (HTRSE-2018), E3S Web of Conferences, 70, 03010 (2018), doi: 10.1051/e3sconf/20187003010.
  11.  L.O. Guelder, “Turbulent premixed flame propagation models for different combustion regimes”, 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1990, doi: 10.1016/S0082-0784(06)80325-5.
  12.  B.F. Magnussen and B.H. Hjertager, “On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, USA, 1976, doi: 10.1016/S0082- 0784(77)80366-4.
  13.  AVL BOOST. AVL AST Documentation 2019.
  14.  M. Gholamisheeri, I.S. Wichman, and E.Toulson, “A study of the turbulent jet flow field in a methane fuelled turbulent jet ignition (TJI) system”, Combust. Flame 183, 194‒206 (2017), doi: 10.1016/j.combustflame.2017.05.008.
  15.  G. Gentz, B. Thelen, M. Gholamisheeri, P. Litke, A. Brown, J. Hoke, and E. Toulson, “A study of the influence of orifice diameter on a turbulent jet ignition system through combustion visualization and performance characterization in a rapid compression machine”, Appl. Therm. Eng. 81, 399‒411 (2015), doi: 10.1016/j.applthermaleng.2015.02.026.






DOI: 10.24425/bpasts.2021.136744


Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; 69; 2; e136744