Details
Title
The impact of smart transformer on different radial distribution systemsJournal title
Archives of Electrical EngineeringYearbook
2021Volume
vol. 70Issue
No 2Authors
Affiliation
Mahmoud, Ibrahem Mohamed A. : Faculty of Energy and Environmental Engineering, The British University in Egypt, Cairo, Egypt ; Mahmoud, Ibrahem Mohamed A. : Electrical Power and Machine Engineering Department, Ain Shams University, Cairo, Egypt ; Abdelsalam, Tarek Saad : Electrical Power and Machine Engineering Department, Ain Shams University, Cairo, Egypt ; Swief, Rania : Electrical Power and Machine Engineering Department, Ain Shams University, Cairo, EgyptKeywords
smart transformer ; smart grid ; direct approach ; power flow ; power loss reductionDivisions of PAS
Nauki TechniczneCoverage
271-283Publisher
Polish Academy of SciencesBibliography
[1] Coster E., Myrzik J.M., Kruimer J., Kling W., Integration Issues of Distributed Generation in Distribution Grids, Proceedings of the IEEE, vol. 99, no. 1 (2011).[2] Sood K., HVDC and FACTS Controllers: Applications of Static Converters in Power Systems, Springer (2004).
[3] Anan V., Sanjeev Kumar Mallik S.K., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[4] Wang J., Huang A., Sung W., Liu Y., Baliga B., Smart grid technologies, IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp. 16–23 (2009).
[5] Liserre M., Buticchi G., Andresen M., De Carne G., Costa L., Zou Z., The Smart Transformer: Impact on the Electric Grid and Technology Challenges, IEEE Industrial Electronics Magazine, vol. 10, no. 2, pp. 46–58 (2016).
[6] Freedman D., Smart transformers-controlling the flow of electricity to stabilize the grid, MIT Technology Review, 10 Emerging Technologies Breakthroughs, pp. 44–45 (2011).
[7] Pournaras E., Vasirani M., Kooij R., Aberer K., Decentralized planning of energy demand for the management of robustness and discomfort, IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2280–2289 (2014).
[8] Belivanis M., Bell K., Coordination of phase-shifting transformers to improve transmission network utilisation, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE, pp. 1–6 (2010).
[9] Teng J.-H., A direct approach for distribution system load flow solutions, IEEE Trans Power Delivery, vol. 18, no. 3, pp. 882–887 (2003).
[10] Shirmohammadi D., Hong H.W., Semlyen A., Luo G.X. , A compensation-based power flow method for weakly meshed distribution and transmission networks, IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–62 (1988).
[11] Cano J.M., Rejwanur M., Mojumdar R., Norniella J.G., Orcajo G.A., Phase shifting transformer model for direct approach power flow studies, International Journal of Electrical Power and Energy Systems, vol. 91, pp. 71–79 (2017).
[12] Mahmoud I.M., Swief R., Abdelsalam T., Tuned Hyper Reconfiguration Analysis applying Plant Growth Algorithm, 2019 21st International Middle East Power Systems Conference (MEPCON), Tanta University, Cairo, Egypt, pp. 884–889 (2019).
[13] Baran M.E., Wu F.F., Network reconfiguration in distribution systems for loss reduction and load balancing, IEEE Trans Power Delivery, vol. 4, no. 2, pp. 1401–1407 (1989).
[14] Samman M.A., Mokhlis H., Mansor N., Mohamad H., Suyono H., Sapari N.M., Fast Optimal Network Reconfiguration with Guided Initialization Based on a Simplified Network Approach, IEEE Access, vol. 8, pp. 11948–11963 (2020).