Details

Title

Slow flow past a weakly permeable spheroidal particle in a hypothetical cell

Journal title

Archive of Mechanical Engineering

Yearbook

2021

Volume

vol. 68

Issue

No 2

Affiliation

Bucha, Tina : Department of Mathematics, National Institute of Technology, Raipur, Chhattisgarh, India ; Prasad, Madasu Krishna : Department of Mathematics, National Institute of Technology, Raipur-492010, Chhattisgarh, India

Authors

Keywords

permeable spheroid ; cell models ; Stokes law ; Darcy's Law ; BJSJ condition

Divisions of PAS

Nauki Techniczne

Coverage

119-146

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] D.A. Nield and A. Bejan. Convection in Porous Media. Springer, New York, 2006.
[2] H.P.G. Darcy. Les Fontaines Publiques de la Ville de Dijon. Victor Delmont, Paris, 1856.
[3] H.C. Brinkman. A calculation of viscous force exerted by flowing fluid on dense swarm of particles. Applied Science Research, 1:27-34, 1949. doi: 10.1007/BF02120313.
[4] D.D. Joseph and L.N. Tao. The effect of permeability on the slow motion of a porous sphere. Journal of Applied Mathematics and Mechanics, 44(8-9):361-364, 1964. doi: 10.1002/zamm.19640440804.
[5] D.N. Sutherland and C.T. Tan. Sedimentation of a porous sphere. Chemical Engineering Science, 25(12):1948-1950, 1970. doi: 10.1016/0009-2509(70)87013-0.
[6] M.P. Singh and J.L. Gupta. The effect of permeability on the drag of a porous sphere in a uniform stream. Journal of Applied Mathematics and Mechanics, 51(1):27-32, 1971. doi: zamm.19710510103.
[7] I.P. Jones. Low Reynolds number flow past a porous spherical shell. Mathematical Proceedings of the Cambridge Philosophical Society, 73(1):231-238, 1973. doi: 10.1017/S0305004100047642.
[8] G. Neale, N. Epstein, and W. Nader. Creeping flow relative to permeable spheres. Chemical Engineering Science, 28(10):1865-1874, 1973. doi: 10.1016/0009-2509(73)85070-5.
[9] V.M. Shapovalov. Viscous fluid flow around a semipermeable particle. Journal of Applied Mechanics and Technical Physics, 50(4):584-588, 2009. doi: 10.1007/s10808-009-0079-x.
[10] G.S. Beavers and D.D. Joseph. Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30(1):197-207, 1967. doi: 10.1017/S0022112067001375.
[11] P.G. Saffman. On the boundary condition at the surface of a porous medium. Studies in Applied Mathematics, 50(2):93-101, 1971. doi: 10.1002/sapm197150293.
[12] S. Khabthani, A. Sellier, and F. Feuillebois. Lubricating motion of a sphere towards a thin porous slab with Saffman slip condition. Journal of Fluid Mechanics, 867:949-968, 2019. doi: 10.1017/jfm.2019.169.
[13] M.C. Lai, M.C. Shiue, and K.C. Ong. A simple projection method for the coupled Navier-Stokes and Darcy flows. Computational Geosciences, 23:21-33, 2019. doi: 10.1007/s10596-018-9781-1.
[14] J. Happel and H. Brenner. Low Reynolds Number Hydrodynamics. Englewood Cliffs New Jork, Prentice-Hall, 1965.
[15] J. Happel. Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. American Institute of Chemical Engineers Journal, 4(2):197-201, 1958. doi: 10.1002/aic.690040214.
[16] S. Kuwabara. The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the Physical Society of Japan, 14(4):527-532,1959. doi: 10.1143/JPSJ.14.527.
[17] S.B. Chen and X. Ye. Boundary effect on slow motion of a composite sphere perpendicular to two parallel impermeable plates. Chemical Engineering Science, 55(13):2441-2453, 2000. doi: 10.1016/S0009-2509(99)00509-6.
[18] D. Srinivasacharya. Motion of a porous sphere in a spherical container. Comptes Rendus Mecanique, 333(8):612-616, 2005. doi: 10.1016/j.crme.2005.07.017.
[19] S.I. Vasin, A.N. Fillipov, and V.M. Starov. Hydrodynamic permeability of membranes built up by particles covered by porous shells: Cell models. Advances in Colloid Interface Science, 139(1-2):83-96, 2008. doi: 10.1016/j.cis.2008.01.005.
[20] P.K. Yadav, A. Tiwari, S. Deo, A. Filippov, and S. Vasin. Hydrodynamic permeability of membranes built up by spherical particles covered by porous shells: effect of stress jump condition. Acta Mechanica, 215:193-209, 2010. doi: 10.1007/s00707-010-0331-8.
[21] J. Prakash, G.P. Raja Sekhar, and M. Kohr. Stokes flow of an assemblage of porous particles: stress jump condition. Zeitschrift für angewandte Mathematik und Physik, 62:1027-1046, 2011. doi: 10.1007/s00033-011-0123-6.
[22] E.I. Saad. Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition. Meccanica, 48:1747-1759, 2013. doi: 10.1007/s11012-013-9706-y.
[23] J. Prakash and G.P. Raja Sekhar. Estimation of the dynamic permeability of an assembly of permeable spherical porous particle using cell model. Journal of Engineering Mathematics, 80:63-73, 2013. doi: 10.1007/s10665-012-9580-y.
[24] M.K. Prasad and T. Bucha. Creeping flow of fluid sphere contained in a spherical envelope: magnetic effect. SN Applied Science, 1(12):1594, 2019. doi: 10.1007/s42452-019-1622-x.
[25] M.K. Prasad and T. Bucha. Magnetohydrodynamic creeping flow around a weakly permeable spherical particle in cell models. Pramana - Journal of Physics, 94(1):1-10, 2020. doi: 10.1007/s12043-019-1892-2.
[26] M.K. Prasad and T. Bucha. MHD viscous flow past a weakly permeable cylinder using Happel and Kuwabara cell models. Iranian Journal of Science and Technology Transaction A: Science, 44:1063-1073, 2020. doi: 10.1007/s40995-020-00894-4.
[27] D. Khanukaeva. Filtration of micropolar liquid through a membrane composed of spherical cells with porous layer. Theoretical and Computational Fluid Dynamics, 34(3):215-229, 2020. doi: 10.1007/s00162-020-00527-x.
[28] M.K. Prasad. Boundary effects of a nonconcentric semipermeable sphere using Happel and Kuwabara cell models. Applied and Computational Mechanics, 15:1-12, 2021. doi: 10.24132/acm.2021.620.
[29] G.G. Stokes. On the effect of the internal friction of fluids on the motion of pendulums. Proceedings of Cambridge Philosophical Society, 9:8-106, 1851.
[30] C.R. Reddy and N. Kishore. Momentum and heat transfer phenomena of confined spheroid particles in power-law liquids, Industrial and Engineering Chemical Research, 53(2):989-998, 2014. doi: 10.1021/ie4032428.
[31] A. Acrivos and T.D. Taylor. The Stokes flow past an arbitrary particle: the slightly deformed sphere. Chemical Engineering Science, 19(7):445-451, 1964. doi: 10.1016/0009-2509(64)85071-5.
[32] H. Ramkissoon. Stokes flow past a slightly deformed fluid sphere, Journal of Applied Mathematics and Physics, 37:859-866, 1986. doi: 10.1007/BF00953677.
[33] D. Palaniappan. Creeping flow about a slightly deformed sphere. Zeitschrift für angewandte Mathematik und Physik, 45:832-838, 1994. doi: 10.1007/BF00942756.
[34] G. Dassios, M. Hadjinicolaou, F.A. Coutelieris, and A.C. Payatakes. Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. International Journal of Engineering Science, 33(10):1465-1490, 1995. doi: 10.1016/0020-7225(95)00010-U.
[35] H. Ramkissoon. Slip flow past an approximate spheroid. Acta Mechanica, 123:227-233, 1997. doi: 10.1007/BF01178412.
[36] T. Zlatanovski. Axi-symmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. The Quarterly Journal of Mechanics and Applied Mathematics, 52(1):111-126, 1999. doi: 10.1093/qjmam/52.1.111.
[37] S. Deo and S. Datta. Slip flow past a prolate spheroid. Indian Journal of Pure and Applied Mathematics, 33(6):903-909, 2002.
[38] P. Vainshtein, M. Shapiro, and C. Gutfinger. Creeping flow past and within a permeable spheroid. International Journal of Multiphase Flow, 28(12):1945-1963, 2002. doi: 10.1016/S0301-9322(02)00106-4.
[39] H. Ramkissoon and K. Rahaman. Wall effects on a spherical particle. International Journal of Engineering Science, 41(3-5), 283-290, 2003. doi: 10.1016/S0020-7225(02)00209-4.
[40] S. Senchenko and H.J. Keh. Slipping Stokes flow around a slightly deformed sphere. Physics of Fluids, 18(8):088104, 2006. doi: 10.1063/1.2337666.
[41] D. Srinivasacharya. Flow past a porous approximate spherical shell, Zeitschrift für angewandte Mathematik und Physik, 58, 646-658, 2007. doi: 10.1007/s00033-006-6003-9.
[42] Y.C. Chang and H.J. Keh. Translation and rotation of slightly deformed colloidal spheres experiencing slip. Journal of Colloid and Interface Science, 330:201-210, 2009. doi: 10.1016/j.jcis.2008.10.055.
[43] E.I. Saad. Translation and rotation of a porous spheroid in a spheroidal container. Canadian Journal of Physics, 88(9):689-700, 2010. doi: 10.1139/P10-040.
[44] E.I. Saad. Stokes flow past an assemblage of axisymmetric porous spheroidal particle in cell models. Journal of Porous Media, 15(9):849-866, 2012. doi: /10.1615/JPorMedia.v15.i9.40.
[45] D. Srinivasacharya and M.K. Prasad. Axisymmetric creeping motion of a porous approximate sphere with an impermeable core. The European Physics Journal Plus, 128(1):9, 2013. doi: 10.1140/epjp/i2013-13009-1.
[46] D. Srinivasacharya and M.K. Prasad. Creeping motion of a porous approximate sphere with an impermeable core in a spherical container. European Journal of Mechanics - B/Fluids, 36:104-114, 2012. doi: 10.1016/j.euromechflu.2012.04.001.
[47] D. Srinivasacharya and M.K. Prasad. Axisymmetric motion of a porous approximate sphere in an approximate spherical container. Archive of Mechanics, 65(6):485-509, 2013.
[48] K.P. Chen. Fluid extraction from porous media by a slender permeable prolate-spheroid. Extreme Mechanics Letter, 4:124-130, 2015. doi: 10.1016/j.eml.2015.06.001.
[49] M. Rasoulzadeh and F.J. Kuchuk. Effective permeability of a porous medium with spherical and spheroidal vug and fracture inclusions. Transport in Porous Media, 116:613-644, 2017. doi: 10.1007/s11242-016-0792-x.
[50] P.K. Yadav, A. Tiwari, and P. Singh. Hydrodynamic permeability of a membrane built up by spheroidal particles covered by porous layer. Acta Mechanica, 229:1869-1892, 2018. doi: 10.1007/s00707-017-2054-6.
[51] M.K. Prasad and T. Bucha. Steady viscous flow around a permeable spheroidal particle. International Journal of Applied and Computational Mathematics, 5:109, 2019. doi: 10.1007/s00707-017-2054-6.
[52] M.K. Prasad and T. Bucha. Effect of magnetic field on the slow motion of a porous spheroid: Brinkman's model. Archive of Applied Mechanics, 91:1739-1755, 2021. doi: 10.1007/s00419-020-01852-7.
[53] J.D. Sherwood. Cell models for suspension viscosity. Chemical Engineering Science, 61(10):6727-6731, 2006. doi: 10.1016/j.ces.2006.07.016.
[54] A. Tiwari, P.K. Yadav, and P. Singh. Stokes flow through assemblage of non homogeneous porous cylindrical particle using cell model technique. National Academy of Science Letters, 41(1):53-57, 2018. doi: 10.1007/s40009-017-0605-y.
[55] H.H. Sherief, M.S. Faltas, and E.I. Saad. Slip at the surface of an oscillating spheroidal particle in a micropolar fluid. ANZIAM Journal, 55(E):E1-E50, 2013. doi: 10.21914/anziamj.v55i0.6813.

Date

05.06.2021

Type

Article

Identifier

DOI: 10.24425/ame.2021.137044 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; Ahead of print

Reviewers


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

×