Szczegóły

Tytuł artykułu

Effect of surface roughness on steady performance of hydrostatic thrust bearings: Rabinowitsch fluids

Tytuł czasopisma

Archive of Mechanical Engineering

Rocznik

2021

Wolumin

vol. 68

Numer

No 2

Afiliacje

Singh, Udaya P. : Rajkiya Engineering College, Sonbhadra, Uttar Pradesh, India

Autorzy

Słowa kluczowe

hydrostatic lubrication ; pressurized bearings ; thrust bearings ; surface roughness ; cubic stress fluids

Wydział PAN

Nauki Techniczne

Zakres

147-164

Wydawca

Polish Academy of Sciences, Committee on Machine Building

Bibliografia

[1] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model. Tribology Transactions, 54(5):723-729, 2011. doi: 10.1080/10402004.2011.597541.
[2] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing. Tribology International, 58:65-70, 2013. doi: 10.1016/j.triboint.2012.09.014.
[3] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model. Journal of Tribology, 134(4):044502, 2012. doi: 10.1115/1.4007350.
[4] B.J. Hamrock, S.R. Schmid, and B.O. Jacobson. Fundamentals of Fluid Film Lubrication. CRC Press, 2004. doi: 10.1201/9780203021187.
[5] R. Bassani and P. Piccigallo. Hydrostatic Lubrication, Elsevier, 1992.
[6] J.A. Coombs and D. Dowson. An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, 179(10):96-114, 1964. doi: 10.1243/PIME_CONF_1964_179_270_02.
[7] J. Peterson, W.E. Finn, and D.W. Dareing. Non-Newtonian temperature and pressure effects of a lubricant slurry in rotating hydrostatic step bearing. Tribology Transactions, 37(4):857-863, 1994. doi: 10.1080/10402009408983369.
[8] V.K. Kapur and K. Verma. The simultaneous effects of inertia and temperature on the performance of a hydrostatic thrust bearing. Wear, 54(1):113-122, 1979. doi: 10.1016/0043-1648(79)90050-4.
[9] P. Singh, B.D. Gupta, and V.K. Kapur. Design criteria for stepped thrust bearings. Wear, 89(1):41-55, 1983. doi: 10.1016/0043-1648(83)90213-2.
[10] S.C. Sharma, S.C. Jain, and D.K. Bharuka. Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing. Tribology International, 35(6):347-356, 2002. doi: 10.1016/S0301-679X(02)00013-0.
[11] Z. Tian, H. Cao, and Y. Huang. Static characteristics of hydrostatic thrust bearing considering the inertia effect on the region of supply hole. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 233(1):188-193, 2019. doi: 10.1177/1350650118773944.
[12] Y.K. Younes. A revised design of circular hydrostatic bearings for optimal pumping power. Tribology International, 26(3):195-200, 1993. doi: 10.1016/0301-679X(93)90093-G.
[13] O.J. Bakker and R.A.J. van Ostayen. Recess depth optimization for rotating, annular, and circular recess hydrostatic thrust bearings. Journal of Tribology, 132(1):011103, 2010. doi: 10.1115/1.4000545.
[14] H. Sawano, Y. Nakamura, H. Yoshioka, and H. Shinno. High performance hydrostatic bearing using a variable inherent restrictor with a thin metal plate. Precision Engineering, 41:78-85, 2015. doi: 10.1016/j.precisioneng.2015.02.001.
[15] J.S. Yadav and V.K. Kapur. On the viscosity variation with temperature and pressure in thrust bearing. International Journal of Engineering Science, 19(2):269-77, 1981. doi: 10.1016/0020-7225(81)90027-6.
[16] P. Zhicheng, S. Jingwu, Z. Wenjie, L. Qingming, and C. Wei. The dynamic characteristics of hydrostatic bearings. Wear, 166(2):215-220, 1993. doi: 10.1016/0043-1648(93)90264-M.
[17] J.R. Lin. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology International, 32(4):207-216, 1999. doi: 10.1016/S0301-679X(99)00034-1.
[18] H. Christensen. Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(1):1013-1026, 1969. doi: 10.1243/PIME_ PROC_1969_184_074_02.
[19] J. Prakash and K. Tiwari. Effect of surface roughness on the squeeze film between rotating porous annular discs with arbitrary porous wall thickness. International Journal of Mechanical Sciences, 27(3):135-144, 1985. doi: 10.1016/0020-7403(85)90054-2.
[20] P. Singh, B.D. Gupta, and V.K. Kapur. Optimization of corrugated thrust bearing characteristics. Wear, 167(2):109-120, 1993. doi: 10.1016/0043-1648(93)90315-D.
[21] J.R. Lin. Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings. International Journal of Machine Tools and Manufacture, 40(11):1671-1689, 2000. doi: 10.1016/S0890-6955(00)00012-2.
[22] A.W. Yacout. The surfacse roughness effect on the hydrostatic thrust spherical bearings performance: Part 3 of 5 - Recessed clearance type of bearings. In Proceedings of the ASME International Mechanical Enginering Congress and Exposition, Volume 9: Mechanical Systems and Control, Parts A, B, and C, pages 431-447, Seattle, Washington, USA, November 11-15, 2007. doi: 10.1115/IMECE2007-41013.
[23] Y. Xuebing, X. Wanli, L. Lang, and H. Zhiquan. Analysis of the combined effect of the surface roughness and inertia on the performance of high-speed hydrostatic thrust bearing. In: Luo J., Meng Y., Shao T., Zhao Q. (eds): Advanced Tribology, 197-201, Springer, 2009. doi: 10.1007/978-3-642-03653-8_66.
[24] A. Walicka, E. Walicki, P. Jurczak, and J. Falicki. Thrust bearing with rough surfaces lubricated by an Ellis fluid. International Journal of Applied Mechanics and Engineering, 19(4):809-822, 2014. doi: 10.2478/ijame-2014-0056.
[25] V.K. Stokes. Couple stress in fluids. The Physics of Fluids, 9(9):1709-1715, 1966. doi: 10.1063/1.1761925.
[26] S. Wada and H. Hayashi. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 2, Experimental studies. Bulletin of JSME, 14(69):279-286, 1971. doi: 10.1299/jsme1958.14.279.
[27] H.A. Spikes. The behaviour of lubricants in contacts: current understanding and future possibilities. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 208(1):3-15, 1994. doi: 10.1243/PIME_PROC_1994_208_345_02.
[28] P. Bourging and B. Gay. Determination of the load capacity of finite width journal bearing by finite element method in the case of a non-Newtonian lubricant. Journal of Tribology, 106(2):285-290, 1984. doi: 10.1115/1.3260906.
[29] H. Hayashi and S. Wada. Hydrodynamic lubrication of journal bearings by pseudo-plastic lubricants: Part 3, Theoretical analysis considering effects of correlation. Bulletin of JSME, 17(109):967-974, 1974. doi: 10.1299/jsme1958.17.967.
[30] H. Hashimoto and S. Wada. The effects of fluid inertia forces in parallel circular squeeze film bearings lubricated with pseudo-plastic fluids. Journal of Tribology, 108(2):282-287, 1986. doi: 10.1115/1.3261177.
[31] J.-R. Lin. Non-Newtonian effects on the dynamic characteristics of one dimensional slider bearings: Rabinowitsch fluid model. Tribology Letters, 10:237-243, 2001. doi: 10.1023/A:1016678208150.
[32] U.P. Singh, R.S. Gupta, and V.K. Kapur. Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model. Chemical and Process Engineering, 32(4):333-349, 2011. doi: 10.2478/v10176-011-0027-1.
[33] J.R. Lin. Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model. Tribology International, 52:190-194, 2012. doi: 10.1016/j.triboint. 2012.02.017.
[34] U.P. Singh. Application of Rabinowitsch fluid model to pivoted curved slider bearings. Archive of Mechanical Engineering, 60(2):247-266, 2013. doi: 10.2478/meceng-2013-0016.
[35] U.P. Singh and R.S. Gupta. Dynamic performance characteristics of a curved slider bearing operating with ferrofluids. Advances in Tribology, 2012:1-6, 2012. doi: 10.1155/2012/278723.
[36] U.P. Singh, R.S. Gupta, and V.K. Kapur. On the squeeze film characteristics between a long cylinder and a flat plate: Rabinowitsch model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(1):34-42, 2013. doi: 10.1177/1350650112458742.
[37] S.C. Sharma and S.K. Yadav. Performance of hydrostatic circular thrust pad bearing operating with Rabinowitsch fluid model. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 227(11):1272-1284, 2013. doi: 10.1177/1350650113490147.
[38] Y. Huang and Z. Tian. A new derivation to study the steady performance of hydrostatic thrust bearing: Rabinowitch fluid model. Journal of Non-Newtonian Fluid Mechanics, 246:31-35, 2017. doi: 10.1016/j.jnnfm.2017.04.012.
[39] U.P. Singh, P. Sinha, and M. Kumar. Analysis of hydrostatic rough thrust bearing lubricated with Rabinowitsch fluid considering fluid inertia in supply region. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tibology, 235(2):386-395, 2021. doi: 10.1177/1350650120945887.
[40] A. Cameron. Basic Lubrication Theory, 3rd edition. E. Horwood, 1981.

Data

06.06.2021

Typ

Article

Identyfikator

DOI: 10.24425/ame.2021.137045 ; ISSN 0004-0738, e-ISSN 2300-1895

Źródło

Archive of Mechanical Engineering; Ahead of print

Recenzenci


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

×