Details
Title
Computational Intelligence in engineering practiceJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Affiliation
Osowski, Stanislaw : Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland ; Osowski, Stanislaw : Military University of Technology, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland ; Sawicki, Bartosz : Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland ; Cichocki, Andrzej : RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0106, JapanAuthors
Divisions of PAS
Nauki TechniczneCoverage
e137052Bibliography
- H. Das, J. K. Rout, and S.C.N. Dey, Maharana, Applied Intelligent Decision Making in Machine Learning, CRC Press, 2020.
- B. Zhang, Y. Wu, J. Lu, and K.L. Du, “Evolutionary computation and its applications in neural and fuzzy systems”, Appl. Comput. Intell. Soft Comput. 2011, 938240 (2011), doi: 10.1155/2011/938240
- M. Injadat, A. Moubayed, A.B. Nassif, and A. Shami, “Machine learning towards intelligent systems: applications, challenges, and opportunities”, Artif. Intell. Rev. (2021), https://doi.org/10.1007/s10462-020-09948-w.
- I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.
- J. Heaton, “Applications of Deep Neural Networks”, arXiv: 2009.05673v2 [cs. LG] 2021, Heaton Research, Inc.
- E. Kayacan and M.A. Khanesar, Fuzzy Neural Networks for Real Time Control Applications: Concepts, Modeling and Algorithms for Fast Learning, Elsevier, 2015.
- A. Burkov, Machine Learning Engineering, True Positive Inc., 2020.
- A. Krizhevsky, I. Sutskever, and G. Hinton, Imagenet classification with deep convolutional neural networks, NIPS, 2012.
- A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to exploratory multi-way data analysis and blind source separation, Wiley, 2009.
- A. Khan, A. Sohail, U. Zahoora, and A.S. Qureshi, “A survey of the recent architectures of deep convolutional neural networks”, Artif. Intell. Rev. 53, 5455–5516 (2020), doi: 10.1007/s10462-020-09825-6.
- A. Osowska-Kurczab, T. Markiewicz, M. Dziekiewicz, and M. Lorent, “Multi-feature ensemble system for renal tumour classification”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136749 (2021).
- E. Kot, Z. Krawczyk, K. Siwek, P. Czwarnowski, and L. Królicki, “Deep learning-based framework for tumour detection and semantic segmentation”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136750 (2021).
- Z. Krawczyk and J. Starzyński, “Segmentation of bone structures with the use of deep learning techniques”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136751 (2021).
- T. Leś, “U-Net based frames partitioning and volumetric analysis for kidney detection in tomographic images”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137051 (2021).
- M. Kołodziej, A. Majkowski, P. Tarnowski, R. Rak, and A. Rysz, “A New Method of Cardiac Sympathetic Index Estimation Using 1D-Convolutional Neural Network”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136921 (2021).
- E. Majda-Zdancewicz et al., “Deep learning vs. feature engineering in the assessment of voice signals for diagnosis in Parkinson’s disease”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e137347 (2021).
- F. Gil and S. Osowski, “Fusion of feature selection methods in gene recognition”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136748 (2021).
- K. Godlewski and B. Sawicki, “Optimisation of MCTS player for The Lord of the Rings: the card game”, Bull. Pol. Acad. Sci. Tech. Sci. 69(3), e136752 (2021).