### Details

#### Title

Prediction of Kaplan turbine coordination tests based on least squares support vector machine with an improved grey wolf optimization algorithm#### Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences#### Yearbook

2021#### Volume

69#### Issue

3#### Affiliation

Kong, Fannie : School of Electrical Engineering, Guangxi University, Nanning, 530000, China ; Xia, Jiahui : School of Electrical Engineering, Guangxi University, Nanning, 530000, China ; Yang, Daliang : School of Electrical Engineering, Guangxi University, Nanning, 530000, China ; Luo, Ming : School of Electrical Engineering, Guangxi University, Nanning, 530000, China#### Authors

#### Keywords

Kaplan turbine ; coordination tests ; least squares support vector machine ; improved grey wolf optimization#### Divisions of PAS

Nauki Techniczne#### Coverage

e137124#### Bibliography

- H.A. Menarin, H.A. Costa, G.L.M. Fredo, R.P. Gosmann, E.C. Finardi, and L.A. Weiss, “Dynamic Modeling of Kaplan Turbines Including Flow Rate and Efficiency Static Characteristics”,
*IEEE Trans. Power Syst.*34(4), 3026‒3034 (2019). - M.M. Shamsuddeen, J. Park, Y. Choi, and J. Kim, “Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner”,
*Renew. Energy*162, 861‒876 (2020). - P. Pennacchi, P. Borghesani, and S. Chatterton, “A cyclostationary multi-domain analysis of fluid instability in Kaplan turbines”,
*Mech. Syst. Signal Process.*60‒61, 375‒390 (2015). - A. Javadi and H. Nilsson, “Detailed numerical investigation of a Kaplan turbine with rotor-stator interaction using turbulence-resolving simulations”,
*Int. J. Heat Fluid Flow*63, 1‒13 (2017). - D. Kranjcic and G. Štumberger, “Differential Evolution-Based Identification of the Nonlinear Kaplan Turbine Model”,
*IEEE Trans. Energy Convert.*29(1), 178‒187 (2014). - Z. Krzemianowski, “Engineering design of low-head Kaplan hydraulic turbine blades using the inverse problem method”,
*Bull. Pol. Acad. Sci. tech. Sci*. 67(6), 1133–1147 (2019). - A.B. Janjua, M.S. Khalil, M. Saeed, F.S. Butt, and A.W. Badar, “Static and dynamic computational analysis of Kaplan turbine runner by varying blade profile”,
*Energy Sustain. Dev.*58, 90‒99 (2020). - Y. Wu, S. Liu, H. Dou, S. Wu, and T. Chen, “Numerical prediction and similarity study of pressure fluctuation in a prototype Kaplan turbine and the model turbine”,
*Comput. Fluids*56, 128‒142 (2012). -
*Renew. Energy*. 160, 112‒126 (2020). - F. Thiery, R. Gustavsson, and J.O. Aidanpää, “Dynamics of a misaligned Kaplan turbine with blade-to-stator contacts”,
*Int. J. Mech. Sci.*99, 251‒261 (2015). - H. Quan, D. Srinivasan, and A. Khosravi, “Short-Term Load and Wind Power Forecasting Using Neural Network-Based Prediction Intervals”,
*IEEE Trans. Neural Netw. Learn. Syst.*25(2), 303‒315 (2014). - V. Marano, G. Rizzo, and F.A. Tiano, “Application of dynamic programming to the optimal management of a hybrid power plant with wind turbines, photovoltaic panels and compressed air energy storage”,
*Appl. Energy*. 97, 849‒859 (2012). - N. Yang and H.Chen, “Decomposed Newton algorithm-based three-phase power-flow for unbalanced radial distribution networks with distributed energy resources and electric vehicle demands”,
*Int. J. Electr. Power Energy Syst.*96, 473‒483 (2018). - J. Park and K.H. Law, “Layout optimization for maximizing wind farm power production using sequential convex programming”,
*Appl. Energy*. 151, 320‒334 (2015). - T. Ding, R. Bo, F. Li, Y. Gu, Q. Guo, and H. Sun, “Exact Penalty Function Based Constraint Relaxation Method for Optimal Power Flow Considering Wind Generation Uncertainty”,
*IEEE Trans. Power Syst*. 30(3), 1546‒1547 (2015). - H. Kebriaei, B.N. Araabi, and A. Rahimi-Kian, “Short-Term Load Forecasting With a New Nonsymmetric Penalty Function”,
*IEEE IEEE Trans. Power Syst*. 26 (4), 1817‒1825 (2011). - A.T. Eseye, J. Zhang, and D. Zheng, “ Short-term photovoltaic solar power forecasting using a hybrid Wavelet-PSO-SVM model based on SCADA and Meteorological information”,
*Renew. Energy*. 118, 357‒367 (2018). - Y. Li and X. Wnag, “Improved dolphin swarm optimization algorithm based on information entropy”,
*Bull. Pol. Acad. Sci. Tech. Sci.*67(4), 679–685 (2019). - H. Koyuncu and R. Ceylan, “A PSO based approach: Scout particle swarm algorithm for continuous global optimization problems”,
*J. Comput. Des. Eng.*6, 129‒142 (2019). - H. Liu, H.P. Wu, Y.F. Li, “Smart wind speed forecasting using EWT decomposition, GWO evolutionary optimization, RELM learning and IEWT reconstruction”,
*Energy Conv. Manag.*161, 266‒283 (2018). - M. Gratza, R. Witzmann, Ch.J. Steinhart, M. Finkel, M. Becker, T. Nagel, T. Wopperer, and H. Wackerl, “Frequency Stability in Island Networks: Development of Kaplan Turbine Model and Control of Dynamics”, in
*2018 Power Systems Computation Conference (PSCC)*, Dublin, Ireland, 2018, pp. 1‒7, doi: 10.23919/PSCC.2018.8442445. - M. Malvoni, M.G. D. Giorgi, and P.M. Congedo, “Photovoltaic forecast based on hybrid PCA–LSSVM using dimensionality reducted data”,
*Neurocomputing*211, 72‒83 (2016). - Y. Sun, Y. Liu, and H. Liu, “Temperature Compensation for a Six-Axis Force/Torque Sensor Based on the Particle Swarm Optimization Least Square Support Vector Machine for Space Manipulator”,
*IEEE Sensors Journal*. 16(3), 798‒805 (2016). - X. Yan and N.A. Chowdhury, “Mid-term electricity market clearing price forecasting: A hybrid LSSVM and ARMAX approach”,
*Int. J. Electr. Power Energy Syst.*53, 20‒26 (2013) - S. Mirjalili, S.M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer”,
*Adv. Eng. Softw.*69, 46‒61 (2014). - I.B.M. Taha and E.E. Elattar, “Optimal reactive power resources sizing for power system operations enhancement based on improved grey wolf optimiser”,
*IET Gener. Transm. Distrib.*12(14), 3421‒3434 (2018). - W. Long, J.J. Jiao, X.M. Liang, and M.Z. Tang, “Inspired grey wolf optimizer for solving large-scale function optimization problems”,
*Appl. Math. Model.*60, 112‒126 (2018). - Y. Li, B. Zhang, and X. Xu, “Decoupling control for permanent magnet in-wheel motor using internal model control based on back- propagation neural network inverse system”,
*Bull. Pol. Acad. Sci. Tech. Sci.*66(6), 961–972 (2018). - D. Huang, S. He, X. He, and X. Zhu, “Prediction of wind loads on high-rise building using a BP neural network combined with POD”, J. Wind Eng. Ind. Aerodyn. 170, 1‒17 (2017).
- A.L. Yang, W.D. Li, and X. Yang, “Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines”,
*Knowledge-Based Syst*. 163, 159‒173 (2019). - N.A. Menad, Z. Noureddine, A. Hemmati-Sarapardeh, and S. Shamshirband, “Modeling temperature-based oil-water relative permeability by integrating advanced intelligent models with grey wolf optimization: Application to thermal enhanced oil recovery processes”,
*Fuel*242, 649‒663 (2019).