Details
Title
Modelling of changes in the resistivity of semi-insulating materialsJournal title
Metrology and Measurement SystemsYearbook
2021Volume
vol. 28Issue
No 3Authors
Affiliation
Suproniuk, Marek : Military University of Technology, Faculty of Electronics, Institute of Electronic Systems, gen. S. Kaliskiego 2, WarsawKeywords
resistivity ; semiconductor ; gallium phosphide ; silicon carbideDivisions of PAS
Nauki TechniczneCoverage
581-592Publisher
Polish Academy of Sciences Committee on Metrology and Scientific InstrumentationBibliography
[1] Sangwal, K. (2007). Additives and Crystallization Processes: From Fundamentals to Applications. Wiley. https://doi.org/10.1002/9780470517833[2] Shah, P. B.,&Jones, K. A. (1998). Two-dimensional numerical investigation of the impact of materialparameter uncertainty on the steady-state performance of passivated 4H–SiC thyristors. Journal of Applied Physics, 84(8), 4625–4630. https://doi.org/10.1063/1.368689
[3] Pas, J., & Rosinski, A. (2017). Selected issues regarding the reliability-operational assessment of electronic transport systems with regard to electromagnetic interference. Eksploatacja i Niezawodnosc, 19(3), 375–381. https://doi.org/10.17531/ein.2017.3.8
[4] Makowski, L., Dziadak, B., & Suproniuk, M. (2019). Design and development of original WSN sensor for suspended particulate matter measurements. Opto-Electronics Review, 27(4), 363–368. https://doi.org/10.1016/j.opelre.2019.11.005
[5] Górecki, P., & Górecki, K. (2015). The analysis of accuracy of selected methods of measuring the thermal resistance of IGBTs. Metrology and Measurement Systems, 22(3), 455–464. https://doi.org/10.1515/mms-2015-0036
[6] Matsuura, H., Komeda, M., Kagamihara, S., Iwata, H., Ishihara, R., Hatakeyama, T., Watanabe, T., Kojima, K., Shinohe, T., & Arai, K. (2004). Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H–SiC epilayers. Journal of Applied Physics, 96(5), 2708–2715. https://doi.org/10.1063/1.1775298
[7] Kagamihara, S., Matsuura, H., Hatakeyama, T., Watanabe, T., Kushibe, M., Shinohe, T., & Arai, K. (2004). Parameters required to simulate electric characteristics of SiC devices for n-type 4H–SiC. Journal of Applied Physics, 96(10), 5601–5606. https://doi.org/10.1063/1.1798399
[8] Matsuura, H., Komeda, M., Kagamihara, S., Iwata, H., Ishihara, R., Hatakeyama, T., Watanabe, T., Kojima, K., Shinohe, T., & Arai, K. (2004). Dependence of acceptor levels and hole mobility on acceptor density and temperature in Al-doped p-type 4H–SiC epilayers. Journal of Applied Physics, 96(5), 2708–2715. https://doi.org/10.1063/1.1775298
[9] Suproniuk, M., Pawłowski, M., Wierzbowski, M., Majda-Zdancewicz, E., & Pawłowski, Ma. (2018). Comparison of methods applied in photoinduced transient spectroscopy to determining the defect center parameters: The correlation procedure and the signal analysis based on inverse Laplace transformation. Review of Scientific Instruments, 89(4). https://doi.org/10.1063/1.5004098
[10] Suproniuk, M., Kaczmarek, W., & Pawlowski, M. (2019). A New Approach to Determine the Spectral Images for Defect Centres in High-Resistive Semiconductor Materials. Proceedings of the 23rd International Conference Electronics 2019, Lithuania. https://doi.org/10.1109/ELECTRONICS.2019.8765694
[11] Piwowarski, K. (2020). Comparison of photoconductive semiconductor switch parameters with selected switch devices in power systems. Opto-electronics Review, 28(2), 74–81. https://doi.org/10.24425/opelre.2020.132502
[12] Suproniuk, M. (2020). Effect of generation rate on transient photoconductivity of semi-insulating 4H–SiC. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-68898-z
[13] Suproniuk, M., Piwowarski, K., Perka, B., Kaminski, P., Kozlowski, R., & Teodorczyk, M. (2019). Blocking characteristics of photoconductive switches based on semi-insulating GAP and GaN. Elektronika ir Elektrotechnika, 25(4), 36–39. https://doi.org/10.5755/j01.eie.25.4.23968
[14] Sze, S. M.,&Kwok, K. Ng. (2006). Physics of Semiconductor Devices.Wiley. https://doi.org/10.1002/ 0470068329
[15] Colinge, J. P., & Colinge C. A. (2002). Physics of Semiconductor Devices. Springer. https://doi.org/10.1007/b117561
[16] Kozubal, M. (2011). Effect shallow impurities on the properties and concentrations of deep-level defect centres in SiC. Ph.D. Dissertation. https://rcin.org.pl/dlibra/publication/29712
[17] Zvanut, M. E., & Konovalov, V. V. (2002). The level position of a deep intrinsic defect in 4H–SiC studied by photoinduced electron parametric resonance. Applied Physics Letters, 80(3), 410–412. https://doi.org/10.1063/1.1432444
[18] Kaminski, P., Kozubal, M., Caldwell, J. D., Kew, K. K., Van Mil, B. L., Myers-Ward, R. L., Eddy, C. R. Jr., & Gaskill, D. K. (2010). Deep-level defects in epitaxial 4H–SiC irradiated with low-energy electrons. Electron Mater, 38(3–4), 26–34.
[19] Danno, K., & Kimoto, T. (2006). Deep hole traps in as-grown 4H–SiC epilayers investigated by deep level transient spectroscopy. Materials Science Forum, 527–529, 501–504. https://doi.org/10.4028/ www.scientific.net/MSF.527-529.501
[20] Kaminski, P., Kozłowski, R., Strzelecka, S., Hruban, A., Jurkiewicz-Wegner, E., & Piersa, M. (2011). High-resolution photoinduced transient spectroscopy of defect centres in semi-insulating GaP. Physica Status Solidi (C) Current Topics in Solid State Physics, 8(4), 1361–1365. https://doi.org/10.1002/ pssc.201084009
[21] Ioffe.ru. GaP – Gallium Phosphide, Band structure and carrier concentration. http://www.ioffe.ru/ SVA/NSM/Semicond/GaP/bandstr.html
[22] Kennedy, T. A., & Wilsay, N. D. (1984). Electron paramagnetic resonance identification of the phosphorus antisite in electron-irradiated InP. https://doi.org/10.1063/1.94654
[23] Baber, N., & Iqbal, M. Z. (1987). Field effect on thermal emission from the 0.85-eV hole level in GaP. Journal of Applied Physics, 62(11), 4471–4474. https://doi.org/10.1063/1.339036
[24] Panish M. B., & Casey, H. C. Jr. (1969). Temperature dependence of the energy GaP in GaAs and GaP. Journal of Applied Physics, 40(1), 163–167. https://doi.org/10.1063/1.1657024