Details

Title

Trajectory determination for pipelines using an inspection robot and pipeline features

Journal title

Metrology and Measurement Systems

Yearbook

2021

Volume

vol. 28

Issue

No 3

Affiliation

Zhang, Shuo : University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada ; Dubljevic, Stevan : University of Alberta, Department of Chemical & Materials Engineering, T6G 2R3 Edmonton, AB, Canada

Authors

Keywords

trajectory determination ; pipeline inspection robot ; pipeline feature ; path reconstruction algorithm

Divisions of PAS

Nauki Techniczne

Coverage

439-453

Publisher

Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation

Bibliography

[1] Liu, Z.,&Kleiner,Y. (2013). State of the art reviewof the inspection technologies for condition assessment of water pipes. Measurement, 46(1), 1–15. https://doi.org/10.1016/j.measurement.2012.05.032
[2] Kishawy, H. A., & Gabbar, H. A. (2010). Review of pipeline integrity management practices. International Journal of Pressure Vessels and Piping, 87(7), 373–380. https://doi.org/10.1016/ https://j.ijpvp.2010.04.003
[3] Zhang, T.,Wang, X., Chen, Y., Shuai, Y., Ullah, Z., Ju, H., & Zhao, Y. (2019). Geomagnetic detection method for pipeline defects based on ceemdan and WEP-TEO. Metrology and Measurement Systems, 26(2), 345–361. https://doi.org/10.24425/mms.2019.128363
[4] Ju, H.,Wang, X., Zhang, T., Zhao, Y., & Ullah, Z. (2019). Defect recognition of buried pipeline based on approximate entropy and variational mode decomposition. Metrology and Measurement Systems, 26(4), 735–755. https://doi.org/10.24425/mms.2019.129587
[5] Piao, G., Guo, J., Hu, T.,&Deng, Y. (2019). High-sensitivity real-time tracking system for high-speed pipeline inspection gauge. Sensors, 19(3), 731. https://doi.org/10.3390/s19030731
[6] De Araújo, R. P., De Freitas, V. C. G., De Lima, G. F., Salazar, A. O., Neto, A. D. D., & Maitelli, A. L. (2018). Pipeline inspection gauge’s velocity simulation based on pressure differential using artificial neural networks. Sensors, 18(9), 3072. https://doi.org/10.3390/s18093072
[7] Chowdhury, M. S., & Abdel-Hafez, M. F. (2016). Pipeline inspection gauge position estimation using inertial measurement unit, odometer, and a set of reference stations. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering, 2(2), 021001-1-10. https://doi.org/10.1115/1.4030945
[8] Coramik, M., & Ege, Y. (2017). Discontinuity inspection in pipelines: a comparison review. Measurement, 111, 359–373. https://doi.org/10.1016/j.measurement.2017.07.058
[9] Idroas, M., Abd Aziz, M. F. A., Zakaria, Z., & Ibrahim, M. N. (2019). Imaging of pipeline irregularities using a PIG system based on reflection mode ultrasonic sensors. International Journal of Oil, Gas and Coal Technology, 20(2), 212–223. https://doi.org/10.1504/IJOGCT.2019.097449
[10] Li, Z., Wang, J., Li, B., & Gao, J. (2014). GPS/INS/Odometer integrated system using fuzzy neural network for land vehicle navigation. Journal of Navigation, 67(6), 967–983. https://doi.org/ 10.1017/S0373463314000307
[11] Jiang, Q., Wu, W., Jiang, M., & Li, Y. (2017). A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/odometer. Sensors, 17(6), 1438. https://doi.org/ 10.3390/s17061438
[12] Georgy, J., Karamat, T., Iqbal, U., & Noureldin, A. (2011). Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter. GPS Solutions, 15(3), 239–252. https://doi.org/10.1007/s10291-010-0186-4
[13] Zhao, Y. (2015) Cubature plus extended hybrid Kalman filtering method and its application in PPP/IMU tightly coupled navigation systems. IEEE Sensors Journal, 15(12), 6973–6985. https://doi.org/10.1109/JSEN.2015.2469105
[14] Guan, L., Cong, X., Zhang, Q., Liu, F., Gao, Y., An, W., & Noureldin, A. (2020). A comprehensive review of micro-inertial measurement unit based intelligent PIG multi-sensor fusion technologies for small-diameter pipeline surveying. Micromachines, 11(9), 840. https://doi.org/10.3390/mi11090840
[15] Wang, L., Wang, W., Zhang, Q., & Gao, P. (2014). Self-calibration method based on navigation in high-precision inertial navigation system with fiber optic gyro. Optical Engineering, 53(6), 064103. https://doi.org/10.1117/1.OE.53.6.064103
[16] Usarek, Z., &Warnke, K. (2017). Inspection of gas pipelines using magnetic flux leakage technology. Advances in Materials Science, 17(3), 37–45. https://doi.org/10.1515/adms-2017-0014
[17] Sasani, S., Asgari, J., & Amiri-Simkooei, A. R. (2016). Improving MEMS-IMU/GPS integrated systems for land vehicle navigation applications. GPS solutions, 20(1), 89–100. https://doi.org/10.1007/s10291-015-0471-3
[18] Hyun, D., Yang, H. S., Park, H. S., & Kim, H. J. (2010). Dead-reckoning sensor system and tracking algorithm for 3-D pipeline mapping. Mechatronics, 20(2), 213–223. https://doi.org/10.1016/ j.mechatronics.2009.11.009
[19] Lee, D. H., Moon, H., Koo, J. C., & Choi, H. R. (2013). Map building method for urban gas pipelines based on landmark detection. International Journal of Control, Automation, and Systems, 11(1), 127–135. https://doi.org/10.1007/s12555-012-0049-6
[20] Li, T., Zhang, H., Niu, X., & Gao, Z. (2017). Tightly-coupled integration of multi-GNSS singlefrequency RTK and MEMS-IMU for enhanced positioning performance. Sensors, 17(11), 2462. https://doi.org/10.3390/s17112462
[21] Sahli, H., & El-Sheimy, N. (2016). A novel method to enhance pipeline trajectory determination using pipeline junctions. Sensors, 16(4), 567. https://doi.org/10.3390/s16040567
[22] Guan, L., Cong, X., Sun, Y., Gao, Y., Iqbal, U., & Noureldin, A. (2017). Enhanced MEMS SINS aided pipeline surveying system by pipeline junction detection in small diameter pipeline, IFACPapersOnLine, 50(1), 3560–3565. https://doi.org/10.1016/j.ifacol.2017.08.962
[23] Crassidis, J. L., & Junkins, J. L. (2011). Optimal Estimation of Dynamic Systems. CRC press. https://doi.org/10.1201/b11154
[24] Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of Inertial Navigation, Satellite- Based Positioning and their Integration. Springer Science & Business Media. https://doi.org/ 10.1007/978-3-642-30466-8
[25] Xu, L., Li, X. R., Duan, Z., & Lan, J. (2013). Modeling and state estimation for dynamic systems with linear equality constraints. IEEE Transactions on Signal Processing, 61(11), 2927–939. https://doi.org/10.1109/TSP.2013.2255045

Date

2021.09.06

Type

Article

Identifier

DOI: 10.24425/mms.2021.137134

Open Access Policy

Metrology and Measurement Systems is an open access journal with all content available with no charge in full text version.


The journal content is available under the license CC BY-NC-ND 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0/
×