Modeling and simulation of an ideal plug flow reactor for synthesis of ethyl oleate using homogeneous acid catalyst

Journal title

Chemical and Process Engineering




vol. 42


No 1


Barno, Suondos K.A. : Presidency of the University of Baghdad, Baghdad, Iraq ; Rashid, Sarmad A. : Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq ; Abbas, Ammar S. : Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq



kinetics ; simulation ; ethyl oleate ; product distribution ; back-mixing

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering


Abbas A.S., Abbas R.N., 2013a. Kinetic study and simulation of oleic acid esterification over prepared NaY zeolite catalyst. Iraqi J. Chem. Pet. Eng. 14 (4), 35–43.
Abbas A.S., Abbas S.M., 2013b. Kinetic study and simulation of oleic acid esterification in different type of reactors. Iraqi J. Chem. Pet. Eng. 14 (2), 13–20.
Abbas A.S., Abbas S.M., 2016. Giresun Taguchi experimental design, optimization and kinetic study of biodiesel production from oleic acid, X th International Statistics Days Conference. Giresun University, Giresun, 743–754.
Abbas A.S., Albayati T.M., Alismaeel Z.T., Doyle, A.M., 2016. Kinetics and mass transfer study of oleic acid esterification over prepared nanoporous HY zeolite. Iraqi J. Chem. Pet. Eng., 17 (1), 47–60.
Abbas A.S., Hussein M.Y., Mohammed H.J., 2019. Preparation of solid catalyst suitable for biodiesel production. Plant Arch., 19 (2), 3853–3861.
Abbas A.S., Abbas R.N., 2015. Preparation and characterization of NaY zeolite for biodiesel production. Iraqi J. Chem. Pet. Eng., 16 (2), 19–29.
Alfattal A.H., Abbas A.S., 2019. Synthesized 2nd generation zeolite as an acid-catalyst for esterification reaction. Iraqi J. Chem. Pet. Eng. 20 (3), 67–73. DOI: 10.31699/IJCPE.2019.3.9.
Alismaeel Z.T., Abbas A.S., Albayati T.M., Doyle A.M., 2018. Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts. Fuel, 234, 170–176. DOI: 10.1016/j.fuel.2018.07.025.
Alnaama A.A., 2017. Synthesis and characteriazation of nanacrystalline ZSM-5 and ZSM-5/MCM-41 composite zeolite for biodiesel production. Ph.D. Thesis, University of Baghdad.
Al-Saadi A., Mathan B., He Y., 2020. Esterification and transesterification over SrO- ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production. Renew. Energy, 158, 388–399. DOI: 10.1016/j.renene.2020.05.171.
Alshahidy B.A., Abbas A.S., 2020. Preparation and modification of 13X zeolite as a heterogeneous catalyst for esterification of oleic acid. AIP Conference Proceedings, 2213, 020167. DOI: 10.1063/5.0000171.
Aranda D.A.G., Santos R.T.P., Tapanes N.C.O., Ramos A.L.D., Antunes O.A.C., 2008. Acid-catalyzed homo- geneous esterification reaction for biodiesel production from palm fatty acids. Catal. Lett. 122, 20–25. DOI: 10.1007/s10562-007-9318-z.
Beula C., Sai P.S.T., 2013. Kinetics of esterification of palmitic acid with ethanol- optimization using statistical design of experiments. Int. J. Chem. Eng. Appl. 4, 388–392. DOI: 10.7763/ijcea.2013.v4.331.
Bornscheuer U., 2018. Lipid modification by enzymes and engineered microbes. Elsevier Inc. DOI: 10.1016/c2016-0-04104-9.
Bouguerra Neji S., Trabelsi M., Frikha M.H., 2009. Esterification of fatty acids with short-chain alcohols over commercial acid clays in a semi-continuous reactor. Energies 2, 1107–1117. DOI: 10.3390/en20401107.
Chaemchuen S., Heynderickx P.M., Verpoort F., 2020. Kinetic modeling of oleic acid esterification with UiO-66: from intrinsic experimental data to kinetics via elementary reaction steps. Chem. Eng. J. 394, 124816. DOI: 10.1016/j.cej.2020.124816.
Chakraborty R., Chowdhury R.D., 2013. Fish bone derived natural hydroxyapatite-supported copper acid cat- alyst: Taguchi optimization of semibatch oleic acid esterification. Chem. Eng. J. 215–216, 491–499. DOI: 10.1016/j.cej.2012.11.064.
Chung K.H., Park B.G., 2009. Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J. Ind. Eng. Chem., 15, 388–392. DOI: 10.1016/j.jiec.2008.11.012.
da Silva M.J., Cardoso A.L., 2013. Heterogeneous tin catalysts applied to the esterification and transesterification reactions. J. Catal. 2013, 1–11. DOI: 10.1155/2013/510509.
Dan L., Laposata M., 1997. Ethyl palmitate and ethyl oleate are the predominant fatty acid ethyl esters in the blood after ethanol ingestion and their synthesis is differentially influenced by the extracellular concentrations of their corresponding fatty acids. Alcohol.: Clin. Exp. Res., 21, 286–292. DOI: 10.1111/j.1530-0277.1997.tb03762.x.
dos Santos R.C.M., Gurgel P.C., Pereira N.S., Breves R.A., de Matos P.R.R., Silva L.P., Sales M.J.A., Lopes R. de V.V., 2020. Ethyl esters obtained from pequi and macaúba oils by transesterification with homogeneous acid catalysis. Fuel 259, 116206. DOI: 10.1016/j.fuel.2019.116206.
Doyle A.M., Albayati T.M., Abbas A.S., Alismaeel Z.T., 2016. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy, 97, 19–23. DOI: 10.1016/j.renene.2016.05.067.
Doyle A.M., Alismaeel Z.T., Albayati T.M., Abbas A.S., 2017. High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel, 199, 394–402. DOI: 10.1016/j.fuel.2017.02.098.
Froment G.F., Bischoff K.B., De Wilde J., 2011. Chemical reactor analysis and design. 3rd ed. John Wiley & Sons, Inc.
Gang L., Wenhui P., 2010. Esterifications of carboxylic acids and alcohols catalyzed by Al2(SO4)3.18H2O under solvent-free condition. Kinet. Catal. 51, 559–565. DOI: 10.1134/S0023158410040154.
Gómez-Castro F.I., Gutiérrez-Antonio C., Romero-Izquiero A.G., Morales-Rodríguez R., Segovia-Hernández J.G., 2016. Mass and energy integration for the supercritical process for biodiesel production and a bioethanol dehy- dration train. Comput. Aided Chem. Eng., 38, 487–492. DOI: 10.1016/B978-0-444-63428-3.50086-2.
Gültekin S., Kalbekov A., 2017. Effect of back mixing on the performance of tubular-flow reactors. Int. J. Dev. Res., 7 (9), 15684–15685.
Harriott P., 2002. Chemical reactor design. CRC Press, New York. DOI: 10.1201/9780203910238.
Hernandez E.M., 2011. Processing of omega-3 oils. In: Hernandez E.M., Hosokawa M. (Eds.), omega-3 oils: Applications in functional foods. Elsevier Inc., 107–128. DOI: 10.1016/B978-1-893997-82-0.50008-6.
Higham D.J., 2008. Modeling and simulating chemical reactions. SIAM Rev., 50, 347–368. DOI: 10.1137/060666457.
Karacan F., 2015. Steady-state optimization for biodiesel production in a reactive distillation column. Clean Technol. Environ. Policy, 17, 1207–1215. DOI: 10.1007/s10098-015-0964-3.
Khan A.K., 2002. Research into biodiesel kinetics and catalyst development. PhD thesis. University of Queensland.
Kiss A.A., Bildea, C.S., 2012. A review of biodiesel production by integrated reactive separation technologies. J. Chem. Technol. Biotechnol., 87, 861–879. DOI: 10.1002/jctb.3785.
Levenspiel O., 1999. Chemical reaction engineering. 3rd ed. John Wiley & Sons, Inc., New York.
Levenspiel O., Bischoff K.B., 1959. Backmixing in the design of chemical reactors. Ind. Eng. Chem., 51, 1431–1434. DOI: 10.1021/ie50600a023.
Liu R., Wang X., Zhao X., Feng P., 2008. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon, 46, 1664–1669. DOI: 10.1016/j.carbon.2008.07.016.
Machado G.D., Pessoa F.L.P., Castier D., Aranda D.A.G, Ferreira-Pinto L., Giufrida W.M., Cabral V.F., Cardozo- Filho L., 2015. Computer simulation of biodiesel production by hydro-esterification. XX Congresso Brasileiro de Engenharia Química, 11119–11126. DOI: 10.5151/chemeng-cobeq2014-0019-27506-160049.
Majeed N.S., Saleh A.A., 2016. Synthesis and characterization of nanocrystalline micro- mesoporous ZSM-5 / MCM-41 Composite Zeolite. Iraqi J. Chem. Pet. Eng., 17 (1), 71–82.
Mann U., 2009. Principles of chemical reactor analysis and design: New tools for industrial chemical reactor operations. 2nd ed. John Wiley & Sons, Inc. DOI: 10.1002/9780470385821.
Mod R.R., Magne F.C., Sumrell G., Koos R.E., 1977. Lubricants and lubricant additives: III. Performance char- acteristics of some thioacetate, phosphorodithioate, and hexachlorocyclopentadiene derivatives of stearic acid amides and esters. JAOCS, 54, 589–591. DOI: 10.1007/BF03027643.
Oliveira C.F., Dezaneti L.M., Garcia F.A.C., de Macedo J.L., Dias J.A., Dias S.C.L., Alvim K.S.P., 2010. Ester- ification of oleic acid with ethanol by 12-tungstophosphoric acid supported on zirconia. Appl. Catal., A, 372, 153–161. DOI: 10.1016/j.apcata.2009.10.027.
Prates C.D., Ballotin F.C., Limborço H., Ardisson J.D., Lago R.M., Teixeira A.P. de C., 2020. Heterogeneous acid catalyst based on sulfated iron ore tailing for oleic acid esterification. Appl. Catal., A, 600, 117624. DOI: 10.1016/j.apcata.2020.117624.
Raia R.Z., da Silva L.S., Marcucci S.M.P., Arroyo P.A., 2017. Biodiesel production from Jatropha curcas L. oil by simultaneous esterification and transesterification using sulphated zirconia. Catal. Today, 289, 105–114. DOI: 10.1016/j.cattod.2016.09.013.
Refaat A.A., 2011. Biodiesel production using solid metal oxide catalysts. Int. J. Environ. Sci. Technol., 8, 203–221. DOI: 10.1007/BF03326210.
Sarkar A., Ghosh S.K., Pramanik P., 2010. Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification. J. Mol. Catal. A: Chem., 327, 73–79. DOI: 10.1016/j.molcata.2010.05.015.
Scragg A.H., 2009. Biofuels: Production, application and development. CABI Publishing.
Sena S.R.C., Barros Neto E.L., Pereira C.G., 2019. Evaluation of the lubrication of ethyl oleate and ethyl octanoate as gasoline additive. Braz. J. Pet. Gas, 13, 111–118. DOI: 10.5419/bjpg2019-0011.
Takagaki A., Toda M., Okamura M., Kondo J.N., Hayashi S., Domen K., Hara M., 2006. Esterification of higher fatty acids by a novel strong solid acid. Catal. Today, 116, 157–161. DOI: 10.1016/j.cattod.2006.01.037.
Tang J., Liang X., 2015. Highly efficient procedure for biodiesel synthesis using polypyrrole functionalized by sulfonic acid. Kinet. Catal., 56, 323–328. DOI: 10.1134/S002315841503009X.
Tankov I., Yankova R., 2019. DFT analysis, reaction kinetics and mechanism of esterification using pyridinium nitrate as a green catalyst. J. Mol. Liq., 277, 241–253. DOI: 10.1016/j.molliq.2018.12.087.
van Rossum G., 1995. Python tutorial. CWI, 1–65.
Vieira S.S., Magriotis Z.M., Graça I., Fernandes A., Ribeiro M.F., Lopes J.M.F.M., Coelho S.M., Santos N.A.V., Saczk A.A., 2017. Production of biodiesel using HZSM-5 zeolites modified with citric acid and SO2−/La2O3. Catal. Today, 279, 267–273. DOI: 10.1016/j.cattod.2016.04.014.
Vieira. S.S., Magriotis Z.M., Filipa M., Graça I., Fernandes A., Manuel J., Lopes F.M., Coelho S.M., Santos Ap. N., V., Saczk Ap.A., 2015. Microporous and mesoporous materials use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous Mesoporous Mater., 201, 160–168. DOI: 10.1016/j.micromeso.2014.09.015.
Yin P., Chen L., Wang Z., Qu R., Liu X., Xu Q., Ren S., 2012. Biodiesel production from esterification of oleic acid over aminophosphonic acid resin D418. Fuel, 102, 499–505. DOI: 10.1016/j.fuel.2012.05.027.
Zhou K., Chaemchuen S., 2017. Metal-organic framework as catalyst in esterification of oleic acid for biodiesel production. Int. J. Environ. Sci. Dev., 8, 251–254. DOI: 10.18178/ijesd.2017.8.4.957.






DOI: 10.24425/cpe.2021.137339

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766