Details
Title
Nonlinear PID controller parameter optimization using modified hybrid artificial bee colony algorithm for continuous stirred tank reactorJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
3Affiliation
Pugazhenthi P, Nedumal : Department of EEE, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India ; Selvaperumal, S. : Department of EEE, Syed Ammal Engineering College, Ramanathapuram, Tamilnadu, India ; Vijayakumar, K. : Department of electronics and instrumentation, Dr. Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu, IndiaAuthors
Keywords
artificial bee colony ; stirred tank reactor ; genetic algorithm ; nonlinear PID ; controller performance measuresDivisions of PAS
Nauki TechniczneCoverage
e137348Bibliography
- M.J. Mahmoodabadi, R.A. Maafi, and M. Taherkhorsandi, “An optimal adaptive robust PID controller subject to fuzzy rules and sliding modes for MIMO uncertain chaotic systems”, Appl. Soft Comput. 52(1), 1191‒1199 (2017).
- C. Lorenzini, A.S. Bazanella, L.F. Alves Pereira, and G.R. Gonçalves da Silva, “The generalized forced oscillation method for tuning PID controllers”, ISA Trans. 87(1), 68‒87 (2019).
- S.K. Valluru and M. Singh, “Performance investigations of APSO tuned linear and nonlinear PID controllers for a nonlinear dynamical system”, J. Electr. Syst. Inf. Technol. 5(3), 442‒452 (2018).
- M. Kumar, D. Prasad, B.S. Giri, and R.S. Singh, “Temperature control of fermentation bioreactor for ethanol production using IMC-PID controller”, Biotechnol. Rep. 22(1), e00319 (2019).
- D.B. Santosh Kumar and R. Padma Sree, “Tuning of IMC based PID controllers for integrating systems with time delay”, ISA Trans. 63(1), 242‒255 (2016).
- J. Prakash and K. Srinivasan, “Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor”, ISA Trans. 48(3), 273‒282 (2009).
- M. Hamdy and I. Hamdan, “Robust fuzzy output feedback controller for affine nonlinear systems via T–S fuzzy bilinear model: CSTR benchmark”, ISA Trans. 57(1), 85‒92 (2015).
- V. Ghaffari, S. VahidNaghavi, and A.A. Safavi, “Robust model predictive control of a class of uncertain nonlinear systems with application to typical CSTR problems”, J. Process Control. 23(4), 493‒499 (2013).
- W.-D. Chang, “Nonlinear CSTR control system design using an artificial bee colony algorithm”, Simul. Modell. Pract. Theory 31(1), 1‒9 (2013)
- Y.P. Wang, N.R. Watson, and H.H. Chong, “Modified genetic algorithm approach to design of an optimal PID controller for AC–DC transmission systems”, Int. J. Electr. Power Energy Syst. 24(1), 59‒69 (2002).
- S.S. Jadon, R. Tiwari, H. Sharma, and J.C. Bansal, “Hybrid Artificial Bee Colony algorithm with Differential Evolution”, Appl. Soft Comput. 58(1), 11‒24 (2017).
- D. Karaboga, “An Idea Based on Honey Bee Swarm for Numerical Optimization”, Technical Report-TR06, Department of Computer Engineering, Engineering Faculty, Erciyes University (2005).
- J. Zhou, X.Yao, F.T.S. Chan, Y. Lin, H. Jin, L. Gao, X. Wang, “An individual dependent multi-colony artificial bee colony algorithm”, Inf. Sci. 485(1), 114‒140 (2019).
- X. Chen, H. Tianfield, and K. Li, “Self-adaptive differential artificial bee colony algorithm for global optimization problems”, Swarm Evol. Comput. 45(1), 70‒91 (2019).
- Y. Zhang, S. Cheng, Y. Shi, D.-Wei Gong, and X. Zhao, “Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm”, Expert Syst. Appl. 137(1), 46‒58 (2019).
- R. Szczepanski, T. Tarczewski, and L.M. Grzesiak, “Adaptive state feedback speed controller for PMSM based on Artificial Bee Colony algorithm”, Appl. Soft Comput. 83(1), 105644 (2019).
- Q. Wei, Z. Guo, H.C. Lau, and Z. He, “An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern”, Appl. Soft Comput. 76(1), 629‒637 (2019).
- T. Sen and H.D. Mathur, “A new approach to solve Economic Dispatch problem using a Hybrid ACO–ABC–HS optimization algorithm”, Electr. Power Energy Syst. 78(1), 735–744 (2017).
- X. Li , Z. Peng , B. Dub, J. Guo, W. Xu, and K. Zhuang, “Hybrid artificial bee colony algorithm with a rescheduling strategy for solving flexible job shop scheduling problems”, Comput. Ind. Eng. 113(1), 10–26 (2017).
- S. Lua, X. Liua, J. Peia, M.T. Thai, and P.M. Pardalos, “A hybrid ABC-TS algorithm for the unrelated parallel-batchingmachines scheduling problem with deteriorating jobs and maintenance activity”, Appl. Soft Comput. 66(1), 168–182 (2018).
- S. Goudarzi et.al., “ABC-PSO for vertical handover in heterogeneous wireless networks”, Neurocomputing 256(1), 63–81 (2017).
- M.A. Awadallah, A.L. Bolaji, and M.A. Al-Betar, “A hybrid artificial bee colony for a nurse rostering problem”, Appl. Soft Comput. 35(1), 726‒739 (2015).
- X. Yan, Y. Zhu, W. Zou, and L. Wang, “A new approach for data clustering using hybrid artificial bee colony algorithm”, Neurocomputing, 97(1), 241‒250 (2012).
- W.-F. Gao and S.-Y. Liu, “A modified artificial bee colony algorithm”, Eng. Appl. Artif. Intell. 39(1), 3, 687‒697 (2012).
- P. Pramanik and M.K. Maiti, “An inventory model for deteriorating items with inflation induced variable demand under two level partial trade credit: A hybrid ABC-GA approach”, Biotechnol. Rep. 85(1), 194–207 (2019).
- V. Hajisalem and S.Babaie, “A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection”, Comput. Networks 136(1), 37–50 (2018).
- W. Chmiel, P. Kadłuczka, J. Kwiecień, and B. Filipowicz, “A comparison of nature inspired algorithms for the quadratic assignment problem”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 513‒522 (2017).
- Y. Li and X. Wang, “Improved dolphin swarm optimization algorithm based on information entropy”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 679‒685 (2019).
- R. Gao, A. O’dywer, and E. Coyle, “A Nonlinear PID control for CSTR using local model networks”, Proceedings of 4th World Congress on Intelligent Control and Automation, Shanghai, China, 2002.
- K. Vijayakumar and M. Thathan, “Enhanced ABC Based PID Controller for Nonlinear Control Systems”, Indian J. Sci. Technol. 8(1), 1‒9 (2015).
- D. Ustuna and A. Akdagli, “Design of band–notched UWB antenna using a hybrid optimization based on ABC and DE algorithms”, Int. J. Electron. Commun. 87(1), 10–21 (2018).
- D. Zhang, R. Dong, Y.-W. Si, F. Ye, Q. Cai, “A hybrid swarm algorithm based on ABC and AIS for 2L-HFCVRP”, Appl. Soft Comput. 64(1), 468–479 (2018).
- S. Surjanovic and D. Bingham, “Virtual Library of Simulation Experiments: Test Functions and Datasets” [Online]. Available: http:// www.sfu.ca/~ssurjano [Accessed: January 21, 2021].
- D. T. Pham and M. Castellani, “Benchmarking and comparison of nature-inspired population-based continuous optimisation algorithms”, Soft Comput. (18), 871–903 (2014).
- Y. Zhang, P. Wang, L. Yang, Y. Liu, Y. Lu, and X. Zhu, “Novel Swarm Intelligence Algorithm for Global Optimization and Multi-UAVs Cooperative Path Planning: Anas Platyrhynchos Optimizer”, Appl. Sci. 10(14), 4821, 1‒29 (2020).
- K. Anbarasan and K. Srinivasan, “Design of RTDA controller for industrial process using SOPDT model with minimum or non-minimum zero”, ISA Trans. 57, 231–244 (2015).