Szczegóły

Tytuł artykułu

The real-time simulator using MATLAB/Simulink software for closed-loop coordination protection devices testing

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences

Rocznik

2021

Wolumin

69

Numer

4

Afiliacje

Smolarczyk, Adam : Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, 00-662 Warsaw, Poland ; Łapczyński, Sebastian : Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, 00-662 Warsaw, Poland ; Szulborski, Michał : Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, 00-662 Warsaw, Poland ; Kolimas, Łukasz : Warsaw University of Technology, Faculty of Electrical Engineering, Electrical Power Engineering Institute, 00-662 Warsaw, Poland ; Kozarek, Łukasz : ILF Consulting Engineers Polska Sp. z o.o., ul. Osmańska 12, 02-823 Warsaw, Poland

Autorzy

Słowa kluczowe

real-time simulator ; distance protections ; protection relays testing ; closed-loop testing ; MATLAB/Simulink

Wydział PAN

Nauki Techniczne

Zakres

e137413

Bibliografia

  1.  M. Faruque, T. Strasser, and G. Lauss, “Real-Time Simulation Technologies for Power Systems Design, Testing and Analysis”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63‒73, 2015.
  2.  P.G. McLaren, R. Kuffel, R. Wierckx, J. Giesbrecht, and L. Arendt, “A real time digital simulator for testing relays”, IEEE Trans. Power Deliv., vol. 7, no. 1, pp. 207–213, 1992.
  3.  C. Dufour and J. Belanger, “A PC-based real-time parallel simulator of electric systems and drives”, Parallel Comput. Electr. Eng., vol. 7, no. 1, pp. 105–113, 2004.
  4.  D. Majstorovic, I. Celanovic, N.D. Teslic, N. Celanovic, and V.A. Katic, “Ultralow-latency hardware-in-the-loop platform for rapid validation of power electronics designs”, IEEE Trans. Ind.. Electron., vol. 58, no. 10, pp. 4708–4716, 2011.
  5.  R. Razzaghi, M. Mitjans, F. Rachidi, and M. Paolone, “An automated FPGA real-time simulator for power electronics and power systems electromagnetic transient applications”, Electr. Power Syst. Res. vol. 141, pp. 147–156, 2016.
  6.  F.R. Blánquez, E. Rebollo, F. Blázquez, and C.A. Platero, “Real Time Power Plant Simulation Platform for Training on Electrical Protections and Automatic Voltage Regulators”, 12th International Conference on Environment and Electrical Engineering, Wroclaw, Poland, 2013, pp.18‒22.
  7.  L.A. Montoya and D. Montenegro, “Adaptive Protection Testbed Using Real time and Hardware-in-the-Loop Simulation”, IEEE International Conference PowerTech., 2013, Grenoble, France, 2013, pp. 20‒24.
  8.  M. Krakowski and Ł. Nogal, “Testing power system protections utilizing hardware-in-the-loop simulations on real-time Linux”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1099‒1105, 2020.
  9.  X. Guillaud et al., “Applications of Real-Time Simulation Technologies in Power and Energy Systems”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 3, pp. 103–115, 2015.
  10.  M.D. Omar Faruque et al., “Real-Time Simulation Technologies for Power Systems Design, Testing, and Analysis”, IEEE Power Energy Technol. Syst. J., vol. 2, no. 2, pp. 63–73, 2015.
  11.  R. Kuffel, D. Ouellete, and P. Forsyth, “Real time simulation and testing using IEC 61850”, Modern Electric Power Systems, (MEPS) International Symposium, 2010, pp. 1‒8.
  12.  D. Gurusinghe, S. Kariyawasam, and D. Ouellette, “Testing of IEC 61850 sampled values based digital substation automation systems”, J. Eng., vol. 15, 2018, pp. 807–811.
  13.  M. Krakowski, K. Kurek, and Ł. Nogal, “Comparative analysis of the DAQ cards-based and the IEC 61850-based real time simulations in the matlab/simulink environment for power system protections”, Electr. Power Syst. Res., vol. 192, pp. 1‒6, 2021.
  14.  RTDS Technologies Inc., Real Time Digital Simulators, [Online] Available: https://www.rtds.com, (accesed: 10.01.2019).
  15.  OPAL-RT Technologies, [Online] Available: https://www.opal-rt.com, (accesed: 10.05.2019).
  16.  Z. Yang, Y. Wang, L. Xing, B. Yin, and J.Tao, “Relay Protection Simulation and Testing of Online Setting Value Modification Based on RTDS”, IEEE Access, vol. 8, pp. 4693‒4699, 2019.
  17. Simulink desktop realtime toolbox, [Online] Available: https://www.mathworks.com/products/simulink-desktop-real-time.html, (accesed: 10.02.2019).
  18.  F. Coffele, C. Booth, and A. Dysko, “An adaptive overcurrent protection scheme for distribution networks”, IEEE Trans. Power Deliv., vol 30, no. 1, pp. 561–568, 2015.
  19.  D. Dantas, “Energy and reactive power differential protectionhardware-in-the-loop validation for transformer application”, J. Eng., vol. 15, pp. 1160–1164, 2018.
  20.  Z. Xu, Z. Su, J. Zhang, A. Wen, and Q. Yang, “An interphase distance relaying algorithm for series-compensated transmission lines”, IEEE Trans. Power Deliv., vol. 29, no. 2, pp. 834–841, 2014.
  21.  R. Kuffel, P. Forsyth, and C. Peters, “The Role and Importance of Real Time Digital Simulation in the Development and Testing of Power System Control and Protection Equipment”, IFAC PapersOnLine, vol. 49‒27, pp. 178–182, 2016.
  22.  V. Papaspiliotopoulos, G. Korres, V. Kleftakis, and N. Hatziargyriou, “Hardware-in-theloop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation”, IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 393–400, 2015.
  23.  A. Smolarczyk, E. Bartosiewicz, R. Kowalik, and D.D. Rasolomampionona, „A Simple Real-Time Simulator for Protection Devices Test”, EnergyCon 2014, IEEE International Energy Conference, Dubrovnik, Croatia, 2014, pp. 837 – 843.
  24.  GE Digital Energy, D60 Line Distance Protection System. UR Series Instruction Manual, (accessed: 12.06.2018).
  25.  Advantech, [Online] Available: https://www.www.advantech.com, (accessed: 15.07.2019).
  26.  OMICRON electronics, CMS 156 Reference Manual,Version CMS156.AE.9, (accessed: 14.07.2020).
  27.  P. Opała, “Extension of a real time simulator for testing of protection relays”, M.Sc. thesis, Warsaw University of Technology, Electrical Power Engineering Institute, Warsaw, 2018.

Data

26.05.2021

Typ

Article

Identyfikator

DOI: 10.24425/bpasts.2021.137413 ; ISSN 2300-1917

Źródło

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2021; e137413
×