Output tracking control of an aircraft subject to additive state dependent disturbance: an optimal control approach

Journal title

Archives of Control Sciences




vol. 31


No 2


Tanyer, Ilker : Gezgini Inc., Folkart Towers, BBuilding, Floor: 36, Office: 3608, Izmir, 35580, Turkey ; Tatlicioglu, Enver : Department of Electrical and Electronics Engineering, Ege University, Izmir, 35100, Turkey ; Zergeroglu, Erkan : Department of Computer Engineering, Gebze Technical University, Kocaeli, 41400, Turkey



optimal control ; aerospace applications ; nonlinear systems ; mechanical/mechatronics applications ; robust control

Divisions of PAS

Nauki Techniczne




Committee of Automatic Control and Robotics PAS


[1] S.N. Balakrishnan and V. Biega: Adaptive-critic-based neural networks for aircraft optimal control. J. of Guidance, Control, and Dynamics, 19(4), (1996), 893–898, DOI : 10.2514/3.21715.
[2] B. Bidikli, E. Tatlicioglu, E. Zergeroglu, and A. Bayrak: An asymptotically stable robust controller formulation for a class of MIMO nonlinear systems with uncertain dynamics. Int. J. of Systems Science, 47(12), (2016), 2913–2924, DOI: 10.1080/00207721.2015.1039627.
[3] B. Bidikli, E. Tatlicioglu, A. Bayrak, and E. Zergeroglu: A new robust integral of sign of error feedback controller with adaptive compensation gain. In IEEE Int. Conf. on Decision and Control, (2013), 3782–3787, DOI: 10.1109/CDC.2013.6760466.
[4] B. Bidikli, E. Tatlicioglu, and E. Zergeroglu: A self tuning RISE controller formulation. In American Control Conf., (2014), 5608–5613, DOI: 10.1109/ACC.2014.6859217.
[5] M. Bouchoucha, M. Tadjine, A. Tayebi, P. Mullhaupt, and S. Bouab- dallah: Robust nonlinear pi for attitude stabilization of a four-rotor miniaircraft: From theory to experiment. Archives of Control Sciences, 18(1), (2008), 99–120.
[6] A.E. Bryson and Yu-Chi Ho: Applied Optimal Control: Optimization, Estimation, and Control. Hemisphere, Washington, DC, WA, USA, 1975.
[7] Agus Budiyono and Singgih S. Wibowo: Optimal tracking controller design for a small scale helicopter. J. of Bionic Engineering, 4 (2007), 271–280, DOI: 10.1016/S1672-6529(07)60041-9.
[8] Y.N. Chelnokov, I.A. Pankratov, and Y.G. Sapunkov: Optimal reorientation of spacecraft orbit. Archives of Control Sciences, 24(2), (2014), 119–128, DOI: 10.2478/acsc-2014-0008.
[9] W.-H. Chen, D.J. Ballance, P.J. Gawthrop, and J. O’Reilly: A nonlinear disturbance observer for robotic manipulators. IEEE Tr. on Industrial Electronics, 47(4), (2000), 932–938, DOI: 10.1109/41.857974.
[10] R. Czyba and L. Stajer: Dynamic contraction method approach to digital longitudinal aircraft flight controller design. Archives of Control Sciences, 29(1), (2019), 97–109, DOI: 10.24425/acs.2019.127525.
[11] Z.T. Dydek, A.M. Annaswamy, and E. Lavretsky: Adaptive control and the NASA X-15-3 flight revisited. IEEE Control Systems, 30(3), (2010), 32–48, DOI: 10.1109/MCS.2010.936292.
[12] E.N. Johnson and A.J. Calise: Pseudo-control hedging: a new method for adaptive control. In Workshop on advances in navigation guidance and control technology, pages 1–23, (2000).
[13] H.K. Khalil and J.W. Grizzle: Nonlinear systems. Prentice Hall, New York, NY, USA, 2002.
[14] D.E. Kirk: Optimal Control Theory: An Introduction. Dover, 2012.
[15] L.-V. Lai, C.-C. Yang, and C.-J. Wu: Time-optimal control of a hovering quadrotor helicopter. J. of Intelligent and Robotic Systems, 45 (2006), 115– 135, DOI: 10.1007/s10846-005-9015-3.
[16] J. Leitner, A. Calise, and JV.R. Prasad: Analysis of adaptive neural networks for helicopter flight control. J. of Guidance, Control, and Dynamics, 20(5), (1997), 972–979, DOI: 10.2514/2.4142.
[17] F.L. Lewis, D. Vrabie, and V.L. Syrmos: Optimal Control. John Wiley & Sons, 2012.
[18] W. MacKunis: Nonlinear Control for Systems Containing Input Uncertainty via a Lyapunov-based Approach. PhD thesis, University of Florida, Gainesville, FL, USA, 2009.
[19] W. MacKunis, P.M. Patre, M.K. Kaiser, and W.E. Dixon: Asymptotic tracking for aircraft via robust and adaptive dynamic inversion methods. IEEE Tr. on Control Systems Technology, 18(6), (2010), 1448–1456, DOI: 10.1109/TCST.2009.2039572.
[20] S. Mishra, T. Rakstad, andW. Zhang: Robust attitude control for quadrotors based on parameter optimization of a nonlinear disturbance observer. J. of Dynamic Systems, Measurement and Control, 141(8), (2019), 081003, DOI: 10.1115/1.4042741.
[21] R.M. Murray: Recent research in cooperative control of multivehicle systems. J. of Dynamic Systems, Measurement and Control, 129 (2007), 571– 583, DOI: 10.1115/1.2766721.
[22] D. Nodland, H. Zargarzadeh, and S. Jagannathan: Neural networkbased optimal adaptive output feedback control of a helicopter UAV. IEEE Trans. on Neural Networks and Learning Systems, 24(7), (2013), 1061– 1073, DOI: 10.1109/TNNLS.2013.2251747.
[23] A. Phillips and F. Sahin: Optimal control of a twin rotor MIMO system using LQR with integral action. In IEEE World Automation Cong., (2014), 114–119, DOI: 10.1109/WAC.2014.6935709.
[24] Federal Aviation Administration. Federal aviation regulations. part 25: Airworthiness standards: Transport category airplanes, 2002.
[25] R.R. Costa, L. Hsu, A.K. Imai, and P. Kokotovic: Lyapunov-based adaptive control ofMIMOsystems. Automatica, 39(7), (2003), 1251–1257, DOI: 10.1016/S0005-1098(03)00085-2.
[26] A.C. Satici, H. Poonawala, and M.W. Spong: Robust optimal control of quadrotor UAVs. IEEE Access, 1 (2013), 79–93, DOI: 10.1109/ACCESS. 2013.2260794.
[27] R.F. Stengel: Optimal Control and Estimation. Dover, 1994.
[28] V. Stepanyan and A. Kurdila: Asymptotic tracking of uncertain systems with continuous control using adaptive bounding. IEEE Trans. on Neural Networks, 20(8), (2009), 1320–1329, DOI: 10.1109/TNN.2009.2023214.
[29] B.L. Stevens and F.L. Lewis: Aircraft control and simulation. John Wiley & Sons, New York, NY, USA, 2003.
[30] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: A robust adaptive tracking controller for an aircraft with uncertain dynamical terms. In IFAC World Cong., (2014), 3202–3207, DOI: 10.3182/20140824-6-ZA-1003.01515.
[31] I. Tanyer, E. Tatlicioglu, and E. Zergeroglu: Neural network based robust control of an aircraft. Int. J. of Robotics& Automation, 35(1), (2020), DOI: 10.2316/J.2020.206-0074.
[32] I. Tanyer, E. Tatlicioglu, E. Zergeroglu, M. Deniz, A. Bayrak, and B. Ozdemirel: Robust output tracking control of an unmanned aerial vehicle subject to additive state-dependent disturbance. IET Control Theory & Applications, 10(14), (2016), 1612–1619, DOI: 10.1049/iet-cta.2015.1304.
[33] G. Tao: Adaptive control design and analysis. John Wiley & Sons, New York, NY, USA, 2003.
[34] Q. Wang and R.F. Stengel: Robust nonlinear flight control of a highperformance aircraft. IEEE Tr. on Control Systems Technology, 13(1), (2005), 15–26, DOI: 10.1109/TCST.2004.833651.
[35] H-N. Wu, M-M. Li, and L. Guo: Finite-horizon approximate optimal guaranteed cost control of uncertain nonlinear systems with application to Mars entry guidance. IEEE Trans. on Neural Networks and Learning Systems, 26(7), (2015), 1456–1467, DOI: 10.1109/TNNLS.2014.2346233.
[36] Q. Xie, B. Luo, F. Tan, and X. Guan: Optimal control for vertical take-off and landing aircraft non-linear system by online kernel-based dual heuristic programming learning. IET Control Theory & Applications, 9(6), (2015), 981–987, DOI: 10.1049/iet-cta.2013.0889.






DOI: 10.24425/acs.2021.137418