Szczegóły

Tytuł artykułu

Unified design method of time delayed PI controller for first order plus dead-time process models with different dead-time to time constant ratio

Tytuł czasopisma

Archives of Control Sciences

Rocznik

2021

Wolumin

vol. 31

Numer

No 2

Afiliacje

Pathiran, Arun R. : Department of Electrical and Electronics Technology, Ethiopian Technical University, Addis Ababa, Ethiopia ; Muniraj, R. : Department of Electrical and Electronics Engineering, P.S.R. Engineering College, Sivakasi, Virudhunagar District, Tamilnadu, India ; Willjuice Iruthayarajan, M. : Department of Electrical and Electronics Engineering, National Engineering College, Kovilpatti, India ; Prabhu, S.R. Boselin : Department of Electronics and Communication Engineering, Surya Engineering College, Mettukadai, India ; Jarin, T. : Department of Electrical and Electronics Engineering, Jyothi Engineering College, Thrissur, India

Autorzy

Słowa kluczowe

PI controller ; time delayed PI controller ; dead-time compensation

Wydział PAN

Nauki Techniczne

Zakres

447-476

Wydawca

Committee of Automatic Control and Robotics PAS

Bibliografia

[1] A. Ingimundarson and T. Hagglund: Robust tuning procedures of deadtime compensating controllers. Control Engineering Practice, 9(11), (2001), 1195–1208, DOI: 10.1016/s0967-0661(01)00065-x.
[2] A. O’Dwyer: Handbook of PI and PID Controller Tuning Rules. Imperial College Press, London. 2006.
[3] A.R. Pathiran and J. Prakash: Design and implementation of a modelbased PI-like control scheme in a reset configuration for stable single-loop systems. The Canadian Journal of Chemical Engineering, 92(9), (2014), 1651–1660, DOI: 10.1002/cjce.22014.
[4] B.D. Tyreus and W.L. Luyben: Tuning PI controllers for integrator/dead time processes. Industrial & Engineering Chemistry Research, 31(11), (1992), 2625–2628, DOI: 10.1021/ie00011a029.
[5] D. Efimov, A. Polyakov, L. Fridman,W. Perruquetti, and J.P. Richard: Delayed sliding mode control. Automatica, 64 (2016), 37–43, DOI: 10.1016/j.automatica.2015.10.055.
[6] D.E. Rivera, M. Morari, and S. Skogestad: Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development, 25(1), (1986), 252–265, DOI: 10.1021/i200032a041.
[7] F. Gao, M. Wu, J. She, and Y. He: Delay-dependent guaranteedcost control based on combination of Smith predictor and equivalentinput- disturbance approach. ISA Transactions, 62, (2016), 215–221, DOI: 10.1016/j.isatra.2016.02.008.
[8] F.G. Shinskey: PID-deadtime control of distributed processes. Control Engineering Practice, 9(11), (2001), 1177–1183. DOI: 10.1016/s0967- 0661(01)00063-6.
[9] F.G. Shinskey: Process Control Systems – Application, Design, and Tuning. McGraw-Hill, New York. 1998.
[10] I.L. Chien: IMC-PID controller design-an extension. IFAC Proceedings, 21(7), (1988), 147–152, DOI: 10.1016/s1474-6670(17)53816-1.
[11] J. Lee and T.F. Edgar: Improved PI controller with delayed or filtered integral mode. AIChE Journal, 48(12), (2002), 2844–2850, DOI: 10.1002/aic.690481212.
[12] J. Na, X. Ren, R. Costa-Castello, and Y. Guo: Repetitive control of servo systems with time delays. Robotics and Autonomous Systems, 62(3), (2014), 319–329, DOI: 10.1016/j.robot.2013.09.010.
[13] J.E. Normey-Rico, C. Bordons and E.F. Camacho: Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 5(6), (1997), 801–810, DOI: 10.1016/s0967-0661(97)00064-6.
[14] J.E.Normey-Rico, R. Sartori, M. Veronesi, and A. Visioli: An automatic tuning methodology for a unified dead-time compensator. Control Engineering Practice, 27, (2014), 11–22, DOI: 10.1016/j.conengprac.2014.02.001.
[15] J.E. Normey-Rico, R.C.C. Flesch, T.L.M. Santos and E.F. Camacho: Comments on A novel dead time compensator for stable processes with long dead times. Journal of Process Control, 22(7), (2012), 1404–1407, DOI: 10.1016/j.jprocont.2012.05.009.
[16] K. Kirtania and M.A.A.S. Choudhury: A novel dead time compensator for stable processes with long dead times. Journal of Process Control, 22(3), (2012), 612–625, DOI: 10.1016/j.jprocont.2012.01.003.
[17] K.J. Astrom and T. Hagglund: Advanced PID Control. Instrument Society of America, Research Triangle Park, N.C. 2006.
[18] K.J. Åstrom and T. Hagglund: The future of PID control. Control Engineering Practice, 9(11), (2001), 1163–1175, DOI: 10.1016/s0967- 0661(01)00062-4.
[19] R. Arun, R. Muniraj, and M.S. Willjuice Iruthayarajan: A new controller design method for single loop internal model control systems. Studies in Informatics and Control, 29(2), (2020), 219–229, DOI: 10.24846/v29i2y202007.
[20] R. Gudin and L. Mirkin: On the delay margin of dead-time compensators. International Journal of Control, 80(8), (2007), 1316–1332, DOI: 10.1080/00207170701316616.
[21] T. Hagglund: An industrial dead-time compensating PI controller. Control Engineering Practice, 4(6), (1996), 749–756, DOI: 10.1016/0967- 0661(96)00065-2.
[22] W.K. Ho, C.C. Hang, and L.S. Cao: Tuning of PID controllers based on gain and phase margin specifications. Automatica, 31(3), (1995), 497–502, DOI: 10.1016/0005-1098(94)00130-b.
[23] X. Sun, J. Xu, and J. Fu: The effect and design of time delay in feedback control for a nonlinear isolation system, Mechanical Systems and Signal Processing, 87, (2017), 206–217, DOI: 10.1016/j.ymssp.2016.10.022.
[24] Y. Wang, F. Yan, S. Jiang, and B. Chen: Time delay control of cabledriven manipulators with adaptive fractional-order nonsingular terminal sliding mode. Advances in Engineering Software, 121, (2018), 13–25, DOI: 10.1016/j.advengsoft.2018.03.004.

Data

2021.07.01

Typ

Article

Identyfikator

DOI: 10.24425/acs.2021.137427 ; ISSN 1230-2384
×