### Szczegóły

#### Tytuł artykułu

Identification of longitudinal aerodynamic characteristics of a strake-wing micro aerial vehicle by using artificial neural networks#### Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences#### Rocznik

2021#### Wolumin

69#### Numer

4#### Autorzy

#### Słowa kluczowe

water tunnel measurements ; neural networks ; unsteady aerodynamic characteristics ; low Reynolds number aerodynamics#### Wydział PAN

Nauki Techniczne#### Zakres

e137508#### Bibliografia

- C. Galiński and R. Żbikowski, “Some problems of micro air vehicles development,”
*Bull. Polish Acad. Sci. Tech. Sci*., vol. 55, no. 1, pp. 91–98, 2007. - K. Sibilski, M. Nowakowski, D. Rykaczewski, P. Szczepaniak, A. Żyluk, A. Sibilska-Mroziewicz, M. Garbowski, and W. Wróblewski, “Identification of fixed-wing micro aerial vehicle aerodynamic derivatives from dynamic water tunnel tests,”
*Aerospace*, vol. 7, no. 8, p. 116, 2020, doi: 10.3390/aerospace7080116. - K. Sibilski, M. Lasek, A. Sibilska-Mroziewicz, and M. Garbowski,
*Dynamcs of Flight of Fixed Wings Micro Aerial Vehicles*, Publishing House of the Warsaw University of Technology, Warsaw, 2020. - M. Abdulrahim, S. Watkins, R. Segal, M. Marino, and J. Sheridan, “Dynamic sensitivity to atmospheric turbulence of fixed-wing UAV with varying configuration,”
*J. Aircaft*, vol. 47, no. 6, pp. 1873–1883, 2010, doi: 10.2514/1.46860. - A.N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,”
*Dokl. Akad. Nauk SSSR*, vol. 114, no. 5, pp. 953–956, 1957, [in Russian]. - W.E. Faller, S.J. Schreck, and H.E. Helin, “Real-time model of three dimensional dynamic reattachment using neural networks,”
*J. Aircraft*, vol. 32, no. 6, pp. 1177–1182, 1995, doi: 10.2514/3.46861. - W.F. Faller and S.J. Schreck, “Unsteady fluid mechanics applications of neural networks,”
*J. Aircraft*, vol. 34, no. 1, pp. 48–55, 1997, doi: 10.2514/2.2134. - M. Kerho and B. Kramer,
*Research water tunnels – specification, Rolling Hills Research Corporation (RHRC)*, El Segundo, CA, USA, 2003. - M. Kerho and B. Kramer,
*Five-component balance and computer-controlled model support system for water tunnel applications*, Rolling Hills Research Corporation (RHRC), El Segundo, CA, USA, 2009. - M. Kerho and B. Kramer,
*Ultrasonic flowmeter and temperature probe, Rolling Hills Research Corporation (RHRC)*, El Segundo, CA, USA, 2010. - P.H. Reisenthel, “Development of nonlinear indicial model using response functions generated by a neural network,” in
*Proceedings of the 35*, Reno, NV, USA, 6–9 January 1997, p. AIAA 97‒0337, doi: 10.2514/6.1997-337.^{th}Aerospace Sciences Meeting and Exhibit - S. Hitzel and D. Zimper, “Wind tunnel simulation and ‘Real’ flight of advanced combat aircraft: industrial perspective,”
*J. Aircraft*, vol. 55, no. 2, pp. 587–602, 2018, doi: 10.2514/1.C033696. - D. Rohlf, S. Schmidt, and J. Irving, “Stability and control analysis for an unmanned aircraft configuration using system-identification techniques,”
*J. Aircraft*, vol. 49, no. 6, pp. 1597–1609, 2012, doi: 10.2514/1.C031392. - D.J. Ignatyev and A.N. Khrabrov, “Neural network modelling of unsteady aerodynamic characteristics at high angles of attack,”
*Aerospace Sci. Technol*., vol. 41, pp. 106–115, 2015, doi: 10.1016/j.ast.2014.12.017. - D. Ignatyev and A. Khrabrov, “Experimental study and neural network modeling of aerodynamic characteristics of canard aircraft at high angles of attack,”
*Aerospace*, vol. 5, no. 1, p. 26, 2018, doi: 10.3390/aerospace5010026. - P.C. Murphy, V. Klein, and N.T. Frink, “Nonlinear unsteady aerodynamic modeling using wind-tunnel and computational data,”
*J. Aircraft*, vol. 54, no. 2, pp. 659–683, 2017, doi: 10.2514/1.C033881. - P. Murphy, V. Klein, and N. Szyba, “Progressive aerodynamic model identification from dynamic water tunnel test of the F-16XL aircraft,” in
*Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Guidance, Navigation, and Control and Co-located Conferences*, 2004, Providence, RI, USA, p. AIAA 2004–5727, doi: 10.2514/6.2004-5277. - B. Paprocki, A. Pregowska, and J. Szczepański, “Optimizing information processing in brain-inspired neural networks,”
*Bull. Polish Acad. Sci. Tech. Sci*., vol. 8, no. 2, pp. 225–233, 2020, doi: 10.24425/bpasts.2020.131844. - W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
*Bull. Math. Biophys*., vol. 5, no. 4, pp. 115– 133, 1943, doi: 10.1007/BF02478259. - J. Hertz, A. Krogh, and R. Palmer,
*Introduction to the theory of neural computation*, CRC Press, Taylor & Francis Inc., London – N-York, 1991. - R.A. Kosiński,
*Artificial neural networks. non-linear dynamics and chaos*, PWN, Warszawa, 2017. - S. Osowski,
*Neural networks for information processing, 4*, Publishing House of the Warsaw University of Technology, Warsaw, 2020.^{th}Edition - R. Tadeusiewicz,
*Neural networks*, Akademic Publisching House, Warsaw, 1993. - K. Diamantaras and S. Kung,
*Principal component neural networks, theory and application*, J. Wiley, New York, 1996. - R. Lippmann, “An introduction to computing with neural nets,”
*IEEE ASSP Mag*., vol. 4, no. 2, pp. 4–22, 1987, doi: 10.1109/ MASSP.1987.1165576. - K.S. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural network”,
*IEEE Trans. Neural Networks*, vol. 1, no. 1, pp. 4–27, 1990, doi: 10.1109/72.80202. - A. Cichocki and R. Unbehauen, “Neural networks for solving systems of linear equations and related problems,”
*IEEE Trans. Circuits Syst. I: Fundam. Theory Appl*., vol. 39, no. 2, pp. 124–138, 1992, doi: 10.1109/81.167018. - J. Denoeux and R. Lengalle, “Initialising back propagation networks with prototypes,”
*Neural Networks*, vol. 6, no. 3, pp. 351–363, 1993, doi: 10.1016/0893-6080(93)90003-F. - E. Karnin, “A simple procedure for pruning backpropagation trained neural networks,”
*IEEE Trans. Neural Networks*, vol. 1, no. 2, pp. 239–242, 1990, doi: 10.1109/72.80236. - J. Manerowski and D. Rykaczewski, “Modelling of UAV flight dynamics using perceptron artificial neural networks,”
*J. Theor. App. Mech*., vol. 43, no. 2, pp. 297–307, 2005. - R. Barron, “Approximation and estimation bounds for artificial neural networks,”
*Machine Learning*, vol. 14, pp. 115–133, 1994, doi: 10.1007/BF00993164. - J.F. Horn, A.J. Calise, and J.V.R. Prasad, “Flight Envelope Cueing on a Tilt-Rotor Aircraft Using Neural Network Limit Prediction,”
*J. Amer. Helic. Soc*., vol. 46, no. 1, pp. 23–31, 2001, doi: 10.4050/JAHS.46.23. - T. Cepowski and T. Szelangiewicz, “Application of Artificial Neural Networks to investigations of ship seakeeping ability,”
*Pol. Marit. Res*., vol. 8, no. 3, pp. 11–15, 2001. - T. Mueller, “Aerodynamic Measurements at Low Reynolds Number for Fixed Wing Micro-Air Vehicles,” in
*AVT/VKI Special Course on Development and Operation of UAVs for Military and Civil Applications*, NATO/VKI, Brussel, Belgium, 1999. - Dong Sun, Huaiyu Wu, Rong Zhu, and Ling Che Hung, “Development of Micro Air Vehicle Based on Aerodynamic Modeling Analysis in Tunnel Tests,” in
*Proceedings of the 2005 IEEE International Conference on Robotics and Automation*, Barcelona, Spain, 2005, pp. 2235–2240, doi: 10.1109/ROBOT.2005.1570445. - R. Randall, S. Shkarayev, G. Abate, and J. Babcock, “Longitudinal aerodynamics of rapidly pitching fixed-wing Micro Air Vehicles,”
*J. Aircraft*, vol. 49, no. 2, pp. 453–471, 2012, doi: 10.2514/1.C031378. - C. Tongchitpakdee, W. Hlusriyakul, C. Pattanathummasid, and C. Thipyopas, “Aerodynamic investigation and analysis of wingtip thickness’s effect on low aspect ratio wing,” in
*Proc. International Micro Air Vehicle Conference and Flight Competition (IMAV2013)*, Toulouse, France, 2013. - J-M. Moschetta, “The aerodynamics of micro air vehicles: technical challenges and scientific issues,”
*Int. J. Eng. Sys. Model. Sim*., vol. 6, no. 3/4, pp. 134–148, 2014, doi: 10.1504/IJESMS.2014.063122. - D. Viieru, J. Tang, Y. Lian, H. Liu, and W. Shy, “Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles,” in
*Proc. 44*, Reno, NV, USA, 2006, p. AIAA 2006–503, doi: 10.2514/6.2006-503.^{th}AIAA Aerospace Sciences Meeting and Exhibit - D. Gyllhem, K. Mohseni, and D. Lawrence, “Numerical simulation of flow around the Colorado Micro Aerial Vehicle,” in
*Proceedings 35*, Toronto, Canada, 2005, p. AIAA 2005–4757, doi: 10.2514/6.2005-4757.^{th}AIAA Fluid Dynamics Conference and Exhibit - V.V. Golubev and M,R. Visbal, “Modeling MAV response in gusty urban environment,”
*Int. J. Micro Air Veh*., vol. 4, no. 1, pp. 79–92, 2012, doi: 10.1260/1756-8293.4.1.79. - R. Cory and R. Tedrake, “Experiments in fixed-wing UAV perching,” in
*Proceedings AIAA Guidance, Navigation and Control Conference and Exhibit*, Honolulu, Hi, USA, 2008, p. AIAA 2008–7256, doi: 10.2514/6.2008-7256. - D.V. Uhlig and M.S. Selig, “Stability characteristics of Micro Air Vehicles from experimental measurements,” in
*Proc. 29*, Honolulu, HI, USA, 2011, p. AIAA 2011–3659. doi: 10.2514/6.2011-3659.^{th}AIAA Applied Aerodynamics Conference