Semiquantum authentication of users resistant to multisession attacks

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences








Zawadzki, Piotr : Department of Telecommunications and Teleinformatics, Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland



quantum cryptography ; quantum identity authentication ; semi-quantum communication

Divisions of PAS

Nauki Techniczne




  1.  M.M. Wilde, Quantum Information Theory. Cambridge University Press, 2013, doi: 10.1017/CBO9781139525343.
  2.  S. Wiesner, “Conjugate coding,” SIGACT News, vol. 15, no. 1, pp. 78–88, 1983, doi: 10.1145/1008908.1008920.
  3.  P. Benioff, “The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines,” J. Stat. Phys., vol. 22, no. 5, pp. 563–591, 1980, doi: 10.1007/BF01011339.
  4.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp. 175–179.
  5.  C.H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci., vol. 560, pp. 7–11, 2014, doi: 10.1016/j.tcs.2014.05.025.
  6.  P.W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput., vol. 26, no. 5, pp. 1484–1509, 1997, doi: 10.1137/S0097539795293172.
  7.  A. Shenoy-Hejamadi, A. Pathak, and S. Radhakrishna, “Quantum cryptography: Key distribution and beyond,” Quanta, vol. 6, no. 1, pp. 1–47, 2017, doi: 10.12743/quanta.v6i1.57.
  8.  F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys., vol. 92, p. 025002, 2020, doi: 10.1103/RevModPhys.92.025002.
  9.  D. Pan, K. Li, D. Ruan, S.X. Ng, and L. Hanzo, “Singlephoton- memory two-step quantum secure direct communication relying on Einstein-Podolsky-Rosen pairs,” IEEE Access, vol. 8, pp. 121 146–121 161, 2020, doi: 10.1109/ACCESS.2020.3006136.
  10.  P. Zawadzki, “Advances in quantum secure direct communication,” IET Quant. Comm., vol. 2, no. 2, pp. 54–62, 2021, doi: 10.1049/ qtc2.12009.
  11.  A. Pljonkin and P.K. Singh, “The review of the commercial quantum key distribution system,” in 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2018, pp. 795–799, doi: 10.1109/PDGC.2018.8745822.
  12.  R. Qi, Z. Sun, Z. Lin, P. Niu, W. Hao, L. Song, Q. Huang, J. Gao, L. Yin, and G. Long, “Implementation and security analysis of practical quantum secure direct communication,” vol. 8, p. 22, 2019, doi: 10.1038/s41377-019-0132-3.
  13.  X. Li and D. Zhang, “Quantum authentication protocol using entangled states,” in Proceedings of the 5th WSEAS International Conference on Applied Computer Science, Hangzhou, China, 2006, pp. 1004–1009. [Online]. Available: publication/242080451_Quantum_authentication_protocol_using_entangled_states.
  14.  G. Zeng and W. Zhang, “Identity verification in quantum key distribution,” Phys. Rev. A, vol. 61, p. 022303, 2000, doi: 10.1103/ PhysRevA.61.022303.
  15.  Y. Kanamori, S.-M. Yoo, D.A. Gregory, and F.T. Sheldon, “On quantum authentication protocols,” in GLOBECOM ’05. IEEE Global Telecommunications Conference, 2005., vol. 3, 2005, pp. 1650–1654, doi: 10.1109/GLOCOM.2005.1577930.
  16.  P. Zawadzki, “Quantum identity authentication without entanglement,” Quantum Inf. Process., vol. 18, no. 1, p. 7, 2019, doi: 10.1007/ s11128-018-2124-2.
  17.  M. Boyer, D. Kenigsberg, and T. Mor, “Quantum key distribution with classical Bob,” Phys. Rev. Lett., vol. 99, p. 140501, 2007, doi: 10.1103/PhysRevLett.99.140501.
  18.  M. Boyer, R. Gelles, D. Kenigsberg, and T. Mor, “Semiquantum key distribution,” Phys. Rev. A, vol. 79, no. 3, p. 032341, 2009, doi: 10.1103/PhysRevA.79.032341.
  19.  W.O. Krawec, “Security of a semi-quantum protocol where reflections contribute to the secret key,” Quantum Inf. Process., vol. 15, no. 5, pp. 2067–2090, 2016, doi: 10.1007/s11128-016-1266-3.
  20.  Z.-R. Liu and T. Hwang, “Mediated semi-quantum key distribution without invoking quantum measurement,” Ann. Phys., vol. 530, no. 4, p. 1700206, 2018, doi: 10.1002/andp.201700206.
  21.  C.-W. Tsai and C.-W. Yang, “Cryptanalysis and improvement of the semi-quantum key distribution robust against combined collective noise,” Int. J. Theor. Phys., vol. 58, no. 7, pp. 2244–2250, 2019, doi: 10.1007/s10773-019-04116-5.
  22.  W.O. Krawec, “Security proof of a semi-quantum key distribution protocol,” in 2015 IEEE International Symposium on Information Theory (ISIT), 2015, pp. 686–690, doi: 10.1109/ISIT.2015.7282542.
  23.  Y.-P. Luo and T. Hwang, “Authenticated semi-quantum direct communication protocols using Bell states,” Quantum Inf. Process., vol. 15, no. 2, pp. 947–958, 2016, doi: 10.1007/s11128-015-1182-y.
  24.  J. Gu, P.-h. Lin, and T. Hwang, “Double C-NOT attack and counterattack on ‘Three-step semi-quantum secure direct communication protocol’,” Quantum Inf. Process., vol. 17, no. 7, p. 182, 2018, doi: 10.1007/s11128-018-1953-3.
  25.  M.-H. Zhang, H.-F. Li, Z.-Q. Xia, X.-Y. Feng, and J.-Y. Peng, “Semiquantum secure direct communication using EPR pairs,” Quantum Inf. Process., vol. 16, no. 5, p. 117, 2017, doi: 10.1007/s11128-017-1573-3.
  26.  L.-L. Yan, Y.-H. Sun, Y. Chang, S.-B. Zhang, G.-G. Wan, and Z.-W. Sheng, “Semi-quantum protocol for deterministic secure quantum communication using Bell states,” Quantum Inf. Process., vol. 17, no. 11, p. 315, 2018, doi: 10.1007/s11128-018-2086-4.
  27.  C. Xie, L. Li, and D. Qiu, “A novel semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 54, no. 10, pp. 3819– 3824, 2015, doi: 10.1007/s10773-015-2622-2.
  28.  A. Yin and F. Fu, “Eavesdropping on semi-quantum secret sharing scheme of specific bits,” Int. J. Theor. Phys., vol. 55, no. 9, pp. 4027– 4035, 2016, doi: 10.1007/s10773-016-3031-x.
  29.  K.-F. Yu, J. Gu, T. Hwang, and P. Gope, “Multi-party semi-quantum key distribution-convertible multi-party semi- quantum secret sharing,” Quantum Inf. Process., vol. 16, no. 8, p. 194, 2017, doi: 10.1007/s11128-017-1631-x.
  30.  X. Gao, S. Zhang, and Y. Chang, “Cryptanalysis and improvement of the semi-quantum secret sharing protocol,” Int. J. Theor. Phys., vol. 56, no. 8, pp. 2512–2520, 2017, doi: 10.1007/s10773-017-3404-9.
  31.  Z. Li, Q. Li, C. Liu, Y. Peng, W. H. Chan, and L. Li, “Limited resource semiquantum secret sharing,” Quantum Inf. Process., vol. 17, no. 10, p. 285, 2018, doi: 10.1007/s11128-018-2058-8.
  32.  K. Sutradhar and H. Om, “Efficient quantum secret sharing without a trusted player,” Quantum Inf. Process., vol. 19, no. 2, p. 73, 2020, doi: 10.1007/s11128-019-2571-4.
  33.  H. Iqbal and W.O. Krawec, “Semi-quantum cryptography,” Quantum Inf. Process., vol. 19, no. 3, p. 97, 2020, doi: 10.1007/s11128-020- 2595-9.
  34.  N.-R. Zhou, K.-N. Zhu, W. Bi, and L.-H. Gong, “Semi-quantum identification,” Quantum Inf. Process., vol. 18, no. 6, p. 197, 2019, doi: 10.1007/s11128-019-2308-4.
  35.  K. Moriarty, B. Kaliski, and A. Rusch, “Pkcs #5: Password-based cryptography specification version 2.1,” Internet Requests for Comments, RFC Editor, RFC 8018, January 2017. [Online]. Available:
  36.  A. Biryukov, D. Dinu, D. Khovratovich, and S. Josefsson, “The memory-hard Argon2 password hash and proof-of-work function,” Working Draft, IETF Secretariat, Internet-Draft draft-irtf-cfrg-argon2-12, 2020. [Online]. Available: html.
  37.  P.-H. Lin, T. Hwang, and C.-W. Tsai, “Double CNOT attack on ‘Quantum key distribution with limited classical Bob’,” Int. J. Quantum Inf., vol. 17, no. 02, p. 1975001, 2019, doi: 10.1142/S0219749919750017.
  38.  D. Moody, L. Chen, S. Jordan, Y.-K. Liu, D. Smith, R. Perlner, and R. Peralta, “Nist report on post-quantum cryptography,” National Institute of Standards and Technology, U.S. Department of Commerce, Tech. Rep., 2016, doi: 10.6028/NIST.IR.8105.
  39.  P. Wang, S. Tian, Z. Sun, and N. Xie, “Quantum algorithms for hash preimage attacks,” Quantum Eng., vol. 2, no. 2, p. e36, 2020, doi: 10.1002/que2.36.






DOI: 10.24425/bpasts.2021.137729