Performance of Unsupervised Change Detection Method Based on PSO and K-means Clustering for SAR Images

Journal title

International Journal of Electronics and Telecommunications




vol. 67


No 3


Shehab, Jinan N. : University of Diyala, College of Engineering, Dept. of Communication Engineering, Iraq ; Abdulkadhim, Hussein A. : University of Diyala, College of Engineering, Dept. of Communication Engineering, Iraq



change detection ; k-means clustering ; multitemporal satellite images ; PSO ; Gabor wavelet filter ; remote sensing

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Electronics and Telecommunications


[1] Feng Gao, Junyu Dong, Bo Li, Qizhi Xu, Cui Xie, “Change detection from synthetic aperture radar images based on neighborhood-based ratio and extreme learning machine,” J. Appl. Remote Sens. 10(4), 046019 (2016),
[2] Turgay Celik, " Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering", IEEE geoscience and remote sensing letters, vol. 6, no. 4, October 2009.
[3] Xinzheng Zhang, Guo Liu, Ce Zhang, Peter M. Atkinson, Xiaoheng Tan, Xin Jian, Xichuan Zhou and Yongming Li, " Two-Phase Object-Based Deep Learning for Multi-Temporal SAR Image Change Detection", Remote Sensing. 2020.
[4] Karpenko A.P., Seliverstov E.Yu. Review of the particle swarm optimization method (PSO) for a global optimization problem. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU], 2009, no. 3 (in Russ.).
[5] Xinzheng Zhang, Hang Su, Ce Zhang, Peter M. Atkinson, Xiaoheng Tan, Xiaoping Zeng and Xin Jian." A Robust Imbalanced SAR Image Change Detection Approach Based on Deep Difference Image and PCANet", > cs > arXiv:2003.01768, 2020
[6] Feng Gao, Xiao Wang, Junyu Dong, Shengke Wang, " SAR Image Change Detection Based on Frequency Domain Analysis and Random Multi-Graphs", Journal of Applied Remote Sensing, 2017
[7] Feng Gao, Junyu Dong, Bo Li, and Qizhi Xu, " Automatic Change Detection in Synthetic Aperture Radar Images Based on PCANet", IEEE geoscience and remote sensing letters, vol. 13, no. 12,2016.
[8] Li Yufeng & He Wei, " Research on SAR image change detection algorithm based on hybrid genetic FCM and image registration", Springer Science+Business Media New York 2017.
[9] Yunhao Gao, Feng Gao, Junyu Dong, and Shengke Wang, " Change Detection from Synthetic Aperture Radar Images Based on Channel Weighting-Based Deep Cascade Network", IEEE journal of selected topics in applied earth observations and remote sensing, 2019.
[10] Wenping Ma, Hui Yang, Yue Wu, Yunta Xiong, Tao Hu, Licheng Jiao and Biao Hou, " Change Detection Based on Multi-Grained Cascade Forest and Multi-Scale Fusion for SAR Images", Remote Sensing. 2019.
[11] Jun Wanga, Xuezhi Yangb, Xiangyu Yanga, Lu Jiaa, Shuai Fanga, "Unsupervised change detection between SAR images based on hypergraphs", ISPRS Journal of Photogrammetry and Remote Sensing 164 (2020) 61–72
[12] J Kennedy, R Eberhart. Particle swarm optimization. // Proceedings of IEEE International conference on Neural Networks. – 1995, pp. 1942 - 1948.
[13] Rupak Chakraborty, Rama Sushil, M. L. Garg, " An Improved PSO-Based Multilevel Image Segmentation Technique Using Minimum Cross-Entropy Thresholding", Arabian Journal for Science and Engineering, King Fahd University of Petroleum & Minerals 2018.
[14] Nameirakpam Dhanachandra, Yambem Jina Chanu, "An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm", Springer Science+Business Media, LLC, part of Springer Nature 2020.
[15] Jin Liu, Zilu Wu, Qi Li " A Novel Local Feature Extraction Algorithm Based on Gabor Wavelet Transform", ICAIP 2019: Proceedings of the 2019 3rd International Conference on Advances in Image Processing.
[16] David Bařina, “Gabor Wavelets in Image Processing”, Proceedings of conference and competitions student EEICT 2011, Czech Republic, pp. 1-5.
[17] Deepak Verma, Dr. Vijaypal Dhaka, Shubhlakshmi Agrwa, “An Improved Average Gabor Wavelet Filter Feature Extraction Technique for Facial Expression Recognition”, International Journal of Innovations in Engineering and Technology (IJIET), Vol. 2 Issue 4 August 2013, pp. 35-41.
[18] Youguo Li, Haiyan Wu, " A Clustering Method Based on K-Means Algorithm", 2012 International Conference on Solid State Devices and Materials Science
[19] Joaquín Pérez-Ortega, Nelva Nely Almanza-Ortega, Andrea Vega-Villalobos, Rodolfo Pazos-Rangel, Crispín Zavala-Díaz and Alicia Martínez-Rebollar, " The K-Means Algorithm Evolution", book, April 3rd 2019,
[20] T. Celik, “Unsupervised change detection in satellite images using principal component analysis and k-means clustering,” IEEE Geosci. Remote Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.
[21] F. Gao, X. Wang, Y. Gao, J. Dong, and S. Wang, “Sea ice change detection in SAR images based on convolutional-wavelet neural networks” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1240–1244, Aug. 2019.
[22] Maoguo Gong, Meng Jia, Linzhi Su, Shuang Wang & Licheng Jiao, "Detecting changes of the Yellow River Estuary via SAR images based on a local fit-search model and kernel-induced graph cuts" Journal International Journal of Remote Sensing, 2014, Remote sensing of the China seas
[23] Stelios Krinidis ; Vassilios Chatzis, " A Robust Fuzzy Local Information C-Means Clustering Algorithm", IEEE Transactions on Image Processing , May 2010.
[24] Maoguo Gong, Linzhi Su, Meng Jia, Weisheng Chen, " Fuzzy Clustering With a Modified MRF Energy Function for Change Detection in Synthetic Aperture Radar Images", IEEE Transactions on Fuzzy Systems, Feb. 2014.






DOI: 10.24425/ijet.2021.137826