Tytuł artykułu

Multi-sourced power system restoration strategy based on modified Prim’s algorithm

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences








Słowa kluczowe

self-healing grid ; micro-grid ; reconfiguration ; greedy algorithms ; graph theory ; simulations ; Prim’s algorithm

Wydział PAN

Nauki Techniczne




  1.  S.A. Arefifar, Y.A.-R.I. Mohamed, and T.H.M. EL-Fouly, “Comprehensive Operational Planning Framework for Self-Healing Control Actions in Smart Distribution Grids,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4192‒4200, 2013, doi: 10.1109/tpwrs.2013.2259852.
  2.  J. Quiros-Tortos and V. Terzija, “A Graph Theory Based New Approach for Power System Restoration,” in Proc. 2013 IEEE Grenoble PowerTech (POWERTECH), 2013, doi: 10.1109/ptc.2013.6652108.
  3.  T.D. Sudhakar and K.N. Srinivs, “Power System Reconfiguration Based on Prim’s Algorithm,” in Proc. 2011 1st International Conference on Electrical Energy Systems (ICEES), 2011, doi: 10.1109/ICEES.2011.5725295.
  4.  M.M. Ibrahim, H.A. Mostafa, M.M.A. Salama, R. El-Shatshat, and K.B. Shaban, “A Graph-theoretic Service Restoration Algorithm for Power Dystribution Systems,” in Proc. 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), 2018, doi: 10.1109/itce.2018.8316647.
  5.  A. Golshani, W. Sun, and K. Sun, “Advanced power system partitioning method for fast and reliable restoration: toward a self-healing grid,” IET Gener. Transmiss. Distrib., vol. 12, no,1, pp.45‒52, 2018, doi: 10.1049/iet-gtd.2016.1797.
  6.  J. Quiros-Tortos, M. Panteli, P. Wall, and V. Tereija, “Sectionalising methodology for paraller system restoration based on graph theory,” IET Gener. Transmiss. Distrib., vol. 9, no. 11, pp. 1216‒1225, 2015, doi: 10.1049/iet-gtd.2014.0727.
  7.  M. Parol, P. Kapler, J. Marzecki, R. Parol, M. Połecki, and Ł. Rokitnicki, “Effective approach to distributed optimal operation control in rural low voltage microgrids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 661‒678, 2020, doi: 10.24425/bpasts.2020.134178.
  8.  S. Sannigrahi, S.R. Ghatak, and P. Acharjee, “Multi-objective optimisation-based active distribution system planning with reconfiguration, intermittent RES and DSTATCOM,” IET Renew. Power Gener., vol. 13, no. 13, pp. 2418‒2429, 2019, doi: 10.1049/iet-rpg.2018.6060.
  9.  A. Bonfilio, M. Invernizzi, A. Labella, and R. Procopio, “Design and Implementation of a Variable Synthetic Inertia Controller for Wind Turbine Generators,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 754‒764, 2019, doi: 10.1109/tpwrs.2018.2865958.
  10.  F. Vazinram, R. Effatnejad, M. Hedayati, and P. Hajihosseini, “Decentralised self-healing model for gas and electricity distribution network,” IET Gener. Transmiss. Distrib., vol. 13, no.  19, pp. 4451‒4463, October 2019, doi: 10.1049/iet-gtd.2019.0416.
  11.  M. Eriksson, M. Armendariz, O. Vasilenko, A. Saleem, and L. Nordström, “Multi-Agent Based Distribution Automation Solution for Self-Healing Grids,” IEEE Trans. Ind. Electron., vol.  62, no. 4, pp. 2620‒2628, 2015, doi: 10.1109/tie.2014.2387098.
  12.  J. Li, Reconfiguration of power network based on graph-theoretic algorithms, Graduate Theses and Dissertations, Iowa State University, 2010, pp. 10‒35, doi: 10.31274/etd-180810-2753.
  13.  T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, “Section 23.2: The algorithms of Kruscal and Prim” in Introduction to Algorithms, 3rd ed., MIT Press, 2009, pp. 631‒638.
  14.  J. Ansari, A. Gholami, and A. Kazemi, “Multi-agent systems for reactive power control in smart grids,” Int. J. Electr. Power Energy Syst., vol. 83, pp. 411‒425, 2016, doi: 10.1016/j.ijepes.2016.04.010.
  15.  M. Borecki, M. Ciuba, Y. Kharchenko, and Y. Khanas, “Substation reliability evaluation in the context of the stability prediction of power grids,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 4, pp. 769‒776, 2020, doi: 10.24425/bpasts.2020.134170.
  16.  Q. Wang, S. Tao, X. Du, C. Zhong, and Y. Tang, “Coordinating Control Strategy for Multi Micro Energy Systems Within Distribution Grid Considering Dynamic Characteristics and Contradictory Interests,” IEEE Access, vol. 7, pp. 139548‒139559, 2019, doi: 10.1109/ access.2019.2943926.
  17.  Z. Wang and J. Wang, “Self-healing resilient distribution systems based on sectionalization into microgrids,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3139‒3149, 2015, doi: 10.1109/tpwrs.2015.2389753.
  18.  W. Bąchorek and M. Benesz, “Analysis of sectionizing switch placement in medium voltage distribution networks in the aspect of improving the continuity of power supply,” Bull. Pol. Acad. Sci. Tech. Sci, vol. 68, no. 3, pp. 459‒466, 2020, doi: 10.24425/bpasts.2020.133377.
  19.  R.J. Wilson, Introduction to Graph Theory, London, Pearson Education Limited, 2010, pp. 8‒79.
  20.  J.A. Bondy and U.S.R. Murty, Graph theory with applications. London, Citeseer, 1976, pp. 10‒55.
  21.  B.S. Torres, L.R. Ferreira, and A.R. Aoki, “Distributed Intelligent System for Self-Healing in Smart Grids,” IEEE Trans. Power Del., vol. 33, no. 5, pp. 2394‒2403, 2018, doi: 10.1109/tpwrd.2018.2845695.
  22.  X. Yang, Y. Zhang, H. He, S. Ren, and G. Weng, “Real-Time Demand Side Management for a Microgrid Considering Uncertainties,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3401‒3414, 2019, doi: 10.1109/tsg.2018.2825388.
  23.  A. Younesi, H. Shayeghi, A. Safari, and P. Siano, “Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation,” Energy, vol. 207, 118220, 2020, doi: 10.1016/
  24.  Y. Shen, Y. Chen, J. Zhang, Z. Sang, and Q. Zhou, “Self-Healing Evaluation of Smart Distribution Network Based on Uncertainty Theory,” IEEE Access, vol. 7, pp. 140022‒140029, 2019, doi: 10.1109/access.2019.2939537.
  25.  K. Anoh, S. Maharjan, A. Ikpehai, Y. Zhang, and B. Adebisi, “Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game- Theoretic Approach,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1264‒1275, 2020, doi: 10.1109/tsg.2019.2934830.
  26.  A. Chris and V. Koivunen, “Coalitional Game-Based Cost Optimalization of Energy Portfolio in Smart Grid Communities,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1960‒1970, 2019, doi: 10.1109/TSG.2017.2784902.
  27.  M. Zadsar, M.R. Haghifam, and S.M.M. Larimi, “Approach for self-healing resilient operation of active distribution network with microgrid,” IET Gener. Transmiss. Distrib., vol. 11, no. 18, pp. 4633‒4643, 2017, doi: 10.1049/iet-gtd.2016.1783.
  28.  W. Jiang, C. Yang, Z. Liu, M. Liang, P. Li, and G. Zhou, “A Hierarchical Control Structure of Distributed Energy Storage System in DC Micro-Grid,” IEEE Access, vol. 7, pp. 128787‒128795, 2019, doi: 10.1109/access.2019.2939626.
  29.  K. Karimizadeh, S. Soleymani, and F. Faghihi, “Optimal placement of DG units for the enhancement of MG networks performance using coalition game theory,” IET Gener. Transmiss. Distrib., vol. 14, no. 5, pp. 853‒862, 2020, doi: 10.1049/iet-gtd.2019.0070.
  30.  J. Machowski, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stabilty and Control. Haboken, New Jersey, John Wiley & Sons, Ltd., 2008, pp. 89‒99.
  31.  P. Li, J. Ji, H. Ji, G. Song, Ch. Wang, and J. Wu, “Self-healing oriented supply restoration method based on the coordination of multiple SOPs in active distribution networks,” Energy, vol. 195, 116968, 2020, doi: 10.1016/
  32.  S. Pochpor and H.M. Suryawanshi, “Design and Analysis of Triplen Controlled Resonant Converter for Renewable Sources to Interface DC Micro Grid,” IEEE Access, vol. 7, pp. 15330‒15339, 2019, doi: 10.1109/access.2019.2891165.
  33.  S. Heinen and M.J. O’Malley, “Complementarities of Supply and Demand Sides in Integrated Energy Systems,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 1156‒1165, 2019, doi: 10.1109/tsg.2018.2871393.
  34.  F. Liberati, A. Di Giorgio, A. Giuseppi, A. Pietrabissa, E. Habib, and L. Martirano, “Joint Model Predictive Control of Electric and Heating Resources in a Smart Building,” IEEE Trans. Ind. Electron, vol. 55, no. 6, pp. 7015‒7027, 2019, doi: 10.1109/TIA.2019.2932954.
  35.  A. Mojallal, S. Lotfifard, and S.M. Azimi, “A Nonlinear Supplementary Controller for Transient Response Improvement of Distributed Generations in Micro-Grids,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 489‒499, 2020, doi: 10.1109/tste.2019.2895961.
  36.  S. Gude and Ch-Ch Chu, “Single Phase Enhanced Phase-Locked Loops Based on Multiple Delayed Signal Cancellation Filters for Micro- Grid Applications,” IEEE Trans. Ind. Electron, vol. 55, no.  6, pp. 7122‒7133, 2019, doi: 10.1109/TIA.2019.2915563.






DOI: 10.24425/bpasts.2021.137942 ; ISSN 2300-1917