Tytuł artykułu

Trajectory tracking control of a mobile manipulator with an external force compensation

Tytuł czasopisma

Bulletin of the Polish Academy of Sciences: Technical Sciences








Galicki, Mirosław : Centrum Badan Kosmicznych Polskiej Akademii Nauk, ul. Bartycka 18A, 00-716 Warsaw, Poland


Słowa kluczowe

non-holonomic mobile manipulator ; unstructured external forces ; trajectory tracking ; robust task space control ; Lyapunov stability

Wydział PAN

Nauki Techniczne




  1.  J. Balleieul, “Kinematic programming alternatives for redundant manipulators,” in Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, St. Louis, MO, USA, 1985, pp. 722–728.
  2.  M. Rani, N. Kumar, and H.P. Singh, “Efficient position/force control of constrained mobile manipulators,” Int. J. Dynam. Control, vol. 6, pp. 1629–1638, 2018.
  3.  W. Dong, “On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty,” Automatica, vol. 38, no. 9, pp. 1475–1484, 2002.
  4.  M. Przybyla, M. Kordasz, R. Madonski, P. Herman, and P. Sauer, “Active disturbance rejection control of a 2DOF manipulator with significant modeling uncertainty,” Bull. Pol. Acad. Sci. Tech. Sci. vol. 60, no. 3, pp. 509–520, 2012.
  5.  C. Baspinar, “On robust position/force control of robot manipu- lators with constraint uncertainties,” Proc. of the 10th IFAC Symposium on Robot Control, vol. 45, no. 22, pp. 555–560, 2012.
  6.  Z. Li and S.S. Ge, Fundamentals of modeling and control of mobile manipulators, Boca Raton, London, New York: CRC, 2013.
  7.  Z. Li, S.S. Ge, M. Adams, and W.S. Wijesoma, “Robust adaptive control of uncertain constrained nonholonomic mobile manipulators,” Automatica, vol. 44, pp. 776–784, 2008.
  8.  M. Kaczmarek, W. Domski, and A. Mazur, “Position-force control of mobile manipulator–nonadaptive and adaptive case,” Arch. Control Sci., vol. 27, no. 4, pp. 487–503, 2017.
  9.  G.D. White, R.M. Bhatt, C.P. Tang, and V.N. Krovi, “Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” IEEE/ASME Trans. Mechatron. vol. 14, no. 3, pp. 349–357, 2009.
  10.  G.D. White, R.M. Bhatt, and V.N. Krovi, “Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” Robotica, vol. 25, no. 2, pp. 147–156, 2007.
  11.  B. Nemec and L. Zlaypah, “Force control of redundant robots in unstructured environment,” IEEE Trans. Ind. Electron. vol. 49, no. 1, pp. 233–240, 2002.
  12.  F. Inoue, T. Murakami, and K. Ohnishi, “A motion control of mobile manipulator with external force,” IEEE/ASME Trans. Mechatron. vol. 6, no. 2, pp. 137–142, 2001.
  13.  T. Shamir and Y. Yomdin, “Repeatability of redundant manipulators: Mathematical solution of the problem,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 1004–1009, 1988.
  14.  M. Boukattaya, N. Mezghani, and T. Damak, “Adaptive motion/force control of uncertain nonholonomic mobile manipulator with estimation of unknown external force,” Multibody Sys. Dyn. vol. 44, pp. 223–250, 2018.
  15.  S. Dehghan, M. Danesh, and F. Sheikholeslam, “Adaptive hybrid force/position of robot manipulators using an adaptive force estimator in the presence of parametric uncertainty,” Adv. Rob. vol. 29, no 4, pp. 209–223, 2015.
  16.  M. Boukattaya, M. Jallouli, T. Damak, “On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances,” Rob. Auton. Syst. vol. 60, no. 12, pp. 1640–1647, 2012.
  17.  P. Gierlak and M. Szuster, “Adaptive position/force control for robot manipulator in contact with a flexible environment,” Rob. Auton. Syst., vol. 95, pp. 80–101, 2017.
  18.  C. Edwards and S.K. Spurgeon, Sliding mode control: Theory and Application, London, Taylor and Francis, 1998.
  19.  V.I. Utkin, Sliding Modes in Control and Optimization, Springer- Verlag, Berlin, Heidelberg, 1992.
  20.  L. Fridman, “Singularly perturbed analysis of chattering in relay control systems,” IEEE Trans. Autom. Control, vol. 47, no. 12, pp. 2079–2084, 2002.
  21.  M. Galicki, “Tracking the kinematically optimal trajectories by mobile manipulators,” J. Intell. Rob. Syst. vol. 93, pp. 635–648, 2018.
  22.  M. Galicki, “Optimal sliding control of mobile manipulators,”  Bull. Pol. Acad. Sci. Tech. Sci. vol. 67, no. 4, pp. 777–788, 2019.
  23.  G. Campion, G. Bastin, and B.D. Andrea-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.
  24.  H. Seraji, “A unified approach to motion control of mobile manipulators,” Int. J. Rob. Res. vol. 17, no. 2, pp. 107–118, 1998.
  25.  H. Seraji and R. Colbaugh, “Improved configuration control for redundant robots,” J. Robotic Syst. vol. 7, no. 6, pp. 897–928, 1990.
  26.  M. Galicki, “Inverse kinematics solution to mobile manipulators” Int. J. Rob. Res. vol. 22, no. 12, pp. 1041–1064, 2003.
  27.  M. Galicki, “Finite-time control of robotic manipulators,” Automatica, vol. 51, pp. 49–54, 2015.
  28.  A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, Springer Netherlands, 1988.
  29.  J. Wang and Y. Li, “Manipulation of a mobile modular manip- ulator interacting with the environment with the assistance of tactile sensing feedback,” Int. J. Humanoid Rob. vol. 8, no. 4, pp. 777–793, 2011.
  30.  D. Phong, J. Choi, W. Lee, and S. Kang, “A novel method for estimating external force: simulation study with a 4-DOF robot manipulator,” Int. J. Precis. Eng. Manuf. vol. 16, no. 4, pp. 755– 766, 2015.
  31.  C.C. Cheah, K. Lee, S. Kawamura, and S. Arimoto, “Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing,” in Proc. 39th IEEE Conf. on Decision and Control, Sydney, NSW, Australia, 2000, vol. 4, pp. 3939–3944.
  32.  C.C. Cheah, “On duality of inverse Jacobian and transpose Jaco- bian in task-space regulation of robots,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 2006, pp. 2571–2576.
  33.  S.A.A. Moosavian and E. Papadopoulos, “Modified transpose Jacobian control of robotic systems,” Automatica, vol. 43, no. 7, pp. 1226–1233, 2007.
  34.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “A novel higher order sliding mode control scheme,” Syst. Control Lett. vol. 58, no. 2, pp. 102–108, 2009.
  35.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Higher order sliding modes in collaborative robotics,” in Lecture Notes in Control and Information Sciences Book Series (LNCIS), Springer, Berlin, Heidelberg, 2017, vol. 412, pp. 409–437.
  36.  M. Galicki, “Finite-time trajectory tracking control in a task space of robotic manipulators,” Automatica, vol. 67, pp. 165– 170, 2016.
  37.  A.N. Atasi and H.K. Khalil, “Separation results for the stabilization of nonlinear systems using different high-gain observer designs,” Syst. Control Lett. vol. 39, no. 3, pp. 183–191, 2000.
  38.  A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” Int. J. Control, vol. 76, no. 9-10, pp. 924–941, 2003.
  39.  A. Levant and M. Livne, “Exact differentiation of signals with unbounded higher derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1076–1080, 2012.
  40.  U. Ozbay, H.T. Sahin, and E. Zergeroglu, “Robust tracking con- trol of kinematically redundant robot manipulators subject to multiple selfmotion criteria,” Robotica, vol. 26, no. 6, pp. 711– 728, 2008.
  41.  J.D. Han, Y.Q. He, and W.L. Xu, “Angular acceleration esti- mation and feedback control: An experimental investigation,” Mechatronics, vol. 17, no. 9, pp. 524–532, 2007.






DOI: 10.24425/bpasts.2021.137943 ; ISSN 2300-1917