Antifungal and plant growth promoting activity of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici colonizing tomato

Journal title

Journal of Plant Protection Research




vol. 61


No 3


Jamil, Arshi : Department of Plant Protection, Aligarh Muslim University, Aligarh, India



antioxidants ; biocontrol ; physiological parameters ; Solanum lycopersicum

Divisions of PAS

Nauki Biologiczne i Rolnicze




Committee of Plant Protection PAS ; Institute of Plant Protection – National Research Institute


Abd-El-Khair H., Elshahawy I.E., Haggag H.K. 2019. Field application of Trichoderma spp. combined with thiophanate-methyl for controlling Fusarium solani and Fusarium oxysporum in dry bean. Bulletin of the National Research Centre 43 (1): 19. DOI:
Abdelrahman M., Abdel-Motaal F., El-Sayed M., Jogaiah S., Shigyo M., Ito S.I., Tran L.S.P. 2016. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling. Plant Science 246: 128–138. DOI:
Ahanger M.A., Tyagi S.R., Wani M.R., Ahmad P. 2014. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. p. 25–55. In: Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment (P. Ahmad, M. Wani, eds.). Springer, New York, USA. DOI:
Ahemad M., Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University – Science 26 (1):1–20. DOI:
Ahmad P., Hashem A., Abd-Allah E.F., Alqarawi A.A., John R., Egamberdieva D., Gucel S. 2015. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science 6: 868. DOI:
Ahmed M. 2011. Management of Fusarium wilt of tomato by soil amendment with Trichoderma koningii and a white sterile fungus. Indian Journal of Research 5: 35–38.
Al-Ani L.K.T. 2018. Trichoderma: beneficial role in sustainable agriculture by plant disease management. “Plant Microbiome: Stress Response 5: 105–126. DOI:
Antoun H., Kloepper J.W. 2001. Plant growth-promoting rhizobacteria (PGPR). p. 1477–1480. In: “Encyclopedia of genetics” (S. Brenner, J.F. Miller, eds.). Academic Press, New York, USA. DOI:
Benítez T., Rincón A.M., Limón M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7 (4): 249–260.
Blumer C., Haas D. 2000. Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Archives of Microbiology 173 (3): 170–177. DOI:
Castano R., Borrero C., Trillas M.I., Avilés M. 2013. Selection of biological control agents against tomato Fusarium wilt and evaluation in greenhouse conditions of two selected agents in three growing media. BioControl 58 (1): 105–116. DOI:
Chaves-Gómez J.L., Chavez-Arias C.C., Cotes Prado A.M., Gómez-Caro S., Restrepo-Díaz H. 2019. Physiological response of cape gooseberry seedlings to three biological control agents under Fusarium oxysporum f. sp. physali infection. Plant Disease 104 (2): 388–397. DOI:
Chet I., Inbar J. 1994. Biological control of fungal pathogens. Applied Biochemistry and Biotechnology 48 (1): 37–43. DOI:
Contreras-Cornejo H.A., Macías-Rodríguez L., Vergara A.G., López-Bucio J. 2015. Trichoderma modulates stomatal aperture and leaf transpiration through an abscisic acid-dependent mechanism in Arabidopsis. Journal of Plant Growth Regulation 34 (2): 425–432. DOI:
de Rodríguez D.J., Angulo-Sánchez J.L., Hernández-Castillo F.D. 2006. An overview of the antimicrobial properties of Mexican medicinal plants. Advances in Phytomedicine 3: 325–377. DOI:
Deng J.J., Shi D., Mao H.H., Li Z.W., Liang S., Ke Y., Luo X.C. 2019. Heterologous expression and characterization of an antifungal chitinase (Chit46) from Trichoderma harzianum GIM 3.442 and its application in colloidal chitin conversion. International Journal of Biological Macromolecules 134: 113–121. DOI:
Ehmann A. 1977. The Van Urk-Salkowski reagent – a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132 (2): 267–276. DOI:
Eisendle M., Oberegger H., Buttinger R., Illmer P., Haas H. 2004. Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryotic Cell 3 (2): 561–563. DOI:
Elshahawy I.E., El-Mohamady R.S. 2019. Biological control of Pythium damping-off and root-rot of tomato using Trichoderma isolates employed alone or in combinations. Journal of Plant Pathology 101 (3): 597–608. DOI:
Fang-Fang X., Ming-Fu G., Zhao-Ping H., Ling-Chao F. 2017. Identification of Trichoderma strain M2 and related growth promoting effects on Brassica chinensis L. International Journal of Agricultural Resources 34 (1): 80.
Fish W.W., Perkins-Veazie P., Collins J.K. 2002. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis 15 (3): 309–317. DOI:
Harikrushana P., Ramchandra S., Shah K.R. 2014. Study of wilt producing Fusarium spp. from tomato (Lycopersicon esculentum Mill). International Journal of Current Microbiology and Applied Sciences 3: 854–858. https://www.researchgatenet/publication/265793287_Original_Research_Article_Study_of_wilt_producing_Fusarium_sp_from_tomato_Lycopersicon_esculentum_Mill
Harish S., Kavino M., Kumar N., Saravanakumar D., Soorianathasundaram K., Samiyappan R. 2008. Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Applied Soil Ecology 39 (2): 187–200. DOI:
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194. DOI:
Harman G.E., Herrera-Estrella A.H., Horwitz B.A., Lorito M. 2012. Special issue: Trichoderma – from basic biology to biotechnology. Microbiology 158 (1): 1–2. DOI:
Hasan Z.A.E., Mohd Zainudin N.A.I., Aris A., Ibrahim M.H., Yusof M.T. 2020. Biocontrol efficacy of Trichoderma asperellum‐enriched coconut fibre against Fusarium wilts of cherry tomato. Journal of Applied Microbiology 129 (4): 991–1003. DOI:
Hashem A., Abd_Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI:
Hiscox J.D., Israelstam G.F. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12): 1332–1334. DOI:
Hsu S.C., Lockwood J.L. 1975. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied and Environmental Microbiology 29 (3): 422–426. DOI:
Huang C.H., Roberts P.D., Datnoff L.E. 2012. Fusarium diseases of tomato. p. 145–158. In: “Fusarium Wilts of Greenhouse Vegetable and Ornamental Crops. APS Press, St. Paul, USA.
Jamil A., Ashraf S. 2020. Utilization of chemical fungicides in managing the wilt disease of chickpea caused by Fusarium oxysporum f. sp. ciceri. Archives of Phytopathology and Plant Protection 53 (17–18): 876–898. DOI:
Jamil A., Musheer N., Ashraf S. 2020. Antagonistic potential of Trichoderma harzianum and Azadirachta indica against Fusarium oxysporum f. sp. capsici for the management of chilli wilt. Journal of Plant Diseases and Protection. (In press) DOI:
Jangir M., Sharma S., Sharma S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biological Control 138: 104069. DOI:
Jogaiah S., Abdelrahman M., Tran L.S.P., Shin-ichi I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of Experimental Botany 64 (12): 3829–3842. DOI:
Kapur A., Hasković A., Čopra-Janićijević A., Klepo L., Topčagić A., Tahirović I., Sofić E. 2012. Spectrophotometric analysis of total ascorbic acid content in various fruits and vegetables. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina 38 (4): 39–42.
Kausar H., Sariah M., Saud H.M., Alam M.Z., Ismail M.R. 2011. Isolation and screening of potential actinobacteria for rapid composting of rice straw. Biodegradation 22 (2): 367–375. DOI:
Khare E., Kumar S., Kim K. 2018. Role of peptaibols and lytic enzymes of Trichoderma cerinum Gur1 in biocontrol of Fusraium oxysporum and chickpea wilt. Environmental Sustainability 1 (1): 39–47. DOI:
Khoshmanzar E., Aliasgharzad N., Neyshabouri M.R., Khoshru B., Arzanlou M., Lajayer B.A. 2019. Effects of Trichoderma isolates on tomato growth and inducing its tolerance to water-deficit stress. International Journal of Environmental Science and Technology 17 (2): 869–878. DOI:
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research 8: 114–124.
Kotasthane A., Agrawal T., Kushwah R., Rahatkar O.V. 2015. In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. European Journal of Plant Pathology 141 (3): 523–543. DOI:
Lacava P.T., Silva-Stenico M.E., Araújo W.L., Simionato A.V.C., Carrilho E., Tsai S.M., Azevedo J.L. 2008. Detection of siderophores in endophytic bacteria Methylobacterium spp. associated with Xylella fastidiosa subsp. pauca. Pesquisa Agropecuária Brasileira 43 (4): 521–528. DOI:
Li R., Chen W., Cai F., Zhao Z., Gao R., Long X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. Journal of Nanjing Agricultural University 40 (3): 464–472.
Li Y.T., Hwang S.G., Huang Y.M., Huang C.H. 2018. Effects of Trichoderma asperellum on nutrient uptake and Fusarium wilt of tomato. Crop Protection 110: 275–282. DOI:
López-Bucio J., Pelagio-Flores R., Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Scientia Horticulturae 196: 109–123. DOI:
Lopez-Mondejar R., Bernal-Vicente A., Ros M., Tittarelli F., Canali S., Intrigiolo F., Pascual J.A. 2010. Utilisation of citrus compost-based growing media amended with Trichoderma harzianum T-78 in Cucumis melo L. seedling production. Bioresource Technology 101 (10): 3718–3723. DOI:
Luo Y., Teng Y., Luo X.Q., Li Z.H.G. 2016. Development of wettable powder of Trichoderma reesei FS10-C and its plant growth-promoting effects. Biotechnology Bulletin 32: 194–199.
Macías-Rodríguez L., Guzmán-Gómez A., García-Juárez P., Contreras-Cornejo H.A. 2018. Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiology Ecology 94 (9): 137. DOI:
Madhavan S., Paranidharan V., Velazhahan R. 2011. Foliar application of Burkholderia spp. strain TNAU-1 leads to activation of defense responses in chilli (Capsicum annuum L.). Brazilian Journal of Plant Physiology 23 (4): 261–266. DOI:
Marzano M., Gallo A., Altomare C. 2013. Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. sp. lycopersici through UV-induced tolerance to fusaric acid. Biological Control 67 (3): 397–408. DOI:
McGovern R.J. 2015. Management of tomato diseases caused by Fusarium oxysporum. Crop Protection 73: 78–92. DOI:
Mei L.I., Hua L.I.A.N., Su X.L., Ying T.I.A.N., Huang W.K., Jie M.E.I., Jiang X.L. 2019. The effects of Trichoderma on preventing cucumber Fusarium wilt and regulating cucumber physiology. Journal of Integrative Agriculture 18 (3): 607–617. DOI:
Mishra A., Singh S.P., Mahfooz S., Singh S.P., Bhattacharya A., Mishra N., Nautiyal C.S. 2018. Endophyte-mediated modulation of defense-related genes and systemic resistance in Withania somnifera (L.) Dunal under Alternaria alternata stress. Applied Environmental Microbiology 84 (8): e0284517. DOI:
Molla A.H., Haque M.M., Haque M.A., Ilias G.N.M. 2012. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agricultural Research 1 (3): 265–272. DOI:
Mona S.A., Hashem A., Abd_Allah E.F., Alqarawi A.A., Soliman D.W.K., Wirth S., Egamberdieva D. 2017. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. Journal of Integrative Agriculture 16 (8): 1751–1757. DOI:
Ng L.C., Ngadin A., Azhari M., Zahari N.A. 2015. Potential of Trichoderma spp. as biological control agents against bakanae pathogen (Fusarium fujikuroi) in rice. Asian Journal of Plant Pathology 9 (2): 46–58. DOI:
Nicolás C., Hermosa R., Rubio B., Mukherjee P.K., Monte E. 2014. Trichoderma genes in plants for stress tolerance-status and prospects. Plant Science 228: 71–78. DOI:
Nielsen P., Sørensen J. 1997. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecology 22 (3): 183–192. DOI:
Noori M.S., Saud H.M. 2012. Potential plant growth-promoting activity of Pseudomonas spp. isolated from paddy soil in Malaysia as biocontrol agent. Journal of Plant Pathology and Microbiology 3 (2): 1–4. DOI:
Otieno N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI:
Paramanandham P., Rajkumari J., Pattnaik S., Busi S. 2017. Biocontrol potential against Fusarium oxysporum f. sp. lycopersici and Alternaria solani and tomato plant growth due to Plant Growth–Promoting Rhizobacteria. International Journal of Vegetable Science 23 (4): 294–303. DOI:
Pérez-Miranda S., Cabirol N., George-Téllez R., Zamudio-Rivera L.S., Fernández F.J. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods 70 (1): 127–131. DOI:
Qi W., Zhao L. 2013. Study of the siderophore‐producing Trichoderma asperellum Q1 on cucumber growth promotion under salt stress. Journal of Basic Microbiology 53 (4): 355–364. DOI:
Ramaiah A.K., Garampalli R.K.H. 2015. In vitro antifungal activity of some plant extracts against Fusarium oxysporum f. sp. lycopersici. Asian Journal of Plant Science & Research 5 (1): 22–27.
Rao W.V.B.S., Sinha M.K. 1963. Phosphate dissolving organisms in the soil and rhizosphere. Indian Journal of Agricultural Sciences 33: 272–278.
Riker A.J., Riker R.S. 1936. Introduction to Research on Plant Diseases. John S Swift, St. Louis, USA.
Rudresh D.L., Shivaprakash M.K., Prasad R.D. 2005. Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 51 (3): 217–222. DOI:
Saba H., Vibhash D., Manisha M., Prashant K.S., Farhan H., Tauseef A. 2012. Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3 (4): 524–531. DOI: /3/4/14
Sallam N.M., Eraky A.M., Sallam A. 2019. Effect of Trichoderma spp. on Fusarium wilt disease of tomato. Molecular Biology Reports 46 (4): 4463–4470. DOI:
Sanoubar R., Barbanti L. 2017. Fungal diseases on tomato plant under greenhouse condition. European Journal of Biological Research 7 (4): 299–308.
Sawant S.D., Sawant I.S. 2010. Improving the shelf life of grapes by pre-harvest treatment with Trichoderma harzianum 5R. Journal of Eco-Friendly Agriculture 5 (2): 179–182.
Schoffelmeer E.A., Klis F.M., Sietsma J.H., Cornelissen B.J. 1999. The cell wall of Fusarium oxysporum. Fungal Genetics and Biology 27 (2–3): 275–282.
Schwyn R., Neilands J.B. 1987. Universal chemical assay for detection and estimation of siderophores. Analytical Biochemistry 160: 47–56. DOI:
Sharma J.P., Kumar S., Bikash D. 2012. Soil application of Trichoderma harzianum and T. viride on biochemical constituents in bacterial wilt resistant and susceptible cultivars of tomato. Indian Phytopathology 65 (3): 264–267.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI:
Soesanto L., Utami D.S., Rahayuniati R.F. 2011. Morphological characteristics of four Trichoderma isolates and two endophytic Fusarium isolates. Canadian Journal of Science and Industrial Research 2: 294–306.
Srivastava R., Khalid A., Singh U.S., Sharma A.K. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control 53: 24–31. DOI:
Surekha C.H., Neelapu N.R.R., Prasad B.S., Ganesh P.S. 2014. Induction of defense enzymes and phenolic content by Trichoderma viride in Vigna mungo infested with Fusarium oxysporum and Alternaria alternata. International Journal of Agricultural Science Research 4 (4): 31–40.
Verma P., Yadav, A.N., Kumar V., Singh D.P., Saxena A.K, 2017. Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. p. 543–580. In: “Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore, Switzerland. DOI:
Vinale F., Sivasithamparam K., Ghisalberti E.L., Woo S.L., Nigro M., Marra R., Lombardi N., Pascale A., Ruocco M., Lanzuise S., Manganiello G. 2014. Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal 8 (1): 127–39. DOI:
Wightwick A.M., Reichman S.M., Menzies N.W., Allinson G. 2013. The effects of copper hydroxide, captan and trifloxystrobin fungicides on soil phosphomonoesterase and urease activity. Water, Air, & Soil Pollution 224 (12): 1–9. DOI:
Woo S.L., Ruocco M., Vinale F., Nigro M., Marra R., Lombardi N., Pascale A., Lanzuise S., Manganiello G., Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8 (1): 71–126. DOI:
Yadav A.N., Kumar V., Dhaliwal H.S., Prasad R., Saxena A.K. 2018. Microbiome in crops: diversity, distribution, and potential role in crop improvement. p. 305–332. In: “Crop Improvement Through Microbial Biotechnology” (A.A. Rastegari, N. Yadav, A.N. Yadav, eds.). Elsevier. DOI: https://doi. org/10.1016/B978-0-444-63987-5.00015-3
Zaim S., Bekkar A.A., Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51 (3–4): 217–226. DOI:
Zehra A., Meena M., Dubey M.K., Aamir M., Upadhyay R.S. 2017. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Brazilian Journal of Botany 40 (3): 651–664. DOI:
Zhang F., Ge H., Zhang F., Guo N., Wang Y., Chen L., Ji X., Li C. 2016. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant Physiology and Biochemistry 100: 64–74. DOI:
Zieslin N., Ben Zaken R. 1993. Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology Biochemistry 31 (3): 333–339.






DOI: 10.24425/jppr.2021.137950