Research on stability and sensitivity of the rotating machines with overhung rotors to lateral vibrations

Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences








Szolc, Tomasz : Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland ; Konowrocki, Robert : Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland



overhung rotor-shaft ; lateral vibrations ; stability and sensitivity analysis ; system imperfections

Divisions of PAS

Nauki Techniczne




  1. K. Nandakumar and A. Chatterjee, “Nonlinear secondary whirl of an overhung rotor”, in Proc. R. Soc. A., vol. 466, pp. 283–301, 2010, doi: 10.1098/rspa.2009.0262.
  2.  O. Cakmak and K.Y. Sanliturk, “A dynamic model of an overhung rotor with ball bearings”, in Proc. Inst. Mech. Eng., Part K: J. Multi- body Dyn., vol. 255, no. 4, pp. 310–321, 2011, doi: 10.1177/1464419311408949.
  3.  Ch. Fu, X. Ren, Y. Yang, and W. Qin, “Dynamic response analysis of an overhung rotor with interval uncertainties”, Nonlinear Dyn., vol. 89, pp. 2115–2124, 2017, doi: 10.1007/s11071-017-3573-3.
  4.  E. Chipato, A.D. Shaw, and M.I. Friswell, “Frictional effects on the Nonlinear Dynamics, of an overhung rotor”, Commun. Nonlinear Sci. Numer. Simul., vol. 78, p. 104875, 2019.
  5.  ISO 1940/1, ”Balance Quality Requirements of Rigid Rotors”, International Organization for Standardization, 2003.
  6.  K.M. Al-Hussain and I. Redmond, “Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment”, Sound Vib., vol. 249, no. 3, pp. 483–498, 2002.
  7.  K.M. Al-Hussain, “Dynamic stability of two rigid rotors connected by a flexible coupling with angular misalignment”, J. Sound Vib., vol. 266, no. 2, pp. 217–234, 2002.
  8.  A.W. Lees, “Misalignment in rigidly coupled rotors”, J. Sound Vib., vol. 305, pp. 261–271, 2007.
  9.  I. Redmond, “Study of a misaligned flexibly coupled shaft system having nonlinear bearings and cyclic coupling stiffness – Theoretical model and analysis”, J. Sound Vib., vol. 329, pp. 700–720, 2010.
  10.  J. Didier, J.-J. Sinou and B. Faverjon, “Study of the nonlinear dynamic response of a rotor system with faults and uncertainties”, J. Sound Vib., vol. 331, pp. 671–703, 2012.
  11.  P. Pennacchi, A. Vania, and S. Chatterton, “Nonlinear effects caused by coupling misalignment in rotors equipped with journal bearings”, Mech. Syst. Signal Process., no.30, pp. 306–322, 2012.
  12.  A. Muszyńska, Ch.T. Hatch, and D.E. Bently, “Dynamics of anisotropically supported rotors”, Int. J. Rotating Mach., vol. 3, no. 2, pp. 133–142, 1997.
  13.  J. Malta, “Investigation of anisotropic rotor with different shaft orientation”, Doctoral Thesis, Darmstadt University of Technology, Department of Machinery Construction, D 17, Darmstadt, 2009.
  14.  T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel, ”Damage identification in vibrating rotor-shaft systems by efficient sampling approach”, Mech. Syst. Signal Process., vol. 23, pp. 1615–1633, 2009.
  15.  T. Szolc, “On the discrete-continuous modeling of rotor systems for the analysis of coupled lateral-torsional vibrations”, Int. J. Rotating Mach., vol. 6, no. 2, pp. 135–149, 2000.
  16.  T. Szolc, K. Falkowski, M. Henzel, and P. Kurnyta-Mazurek, “The determination of parameters for a design of the stable electro-dynamic passive magnetic support of a high-speed flexible rotor”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 1, pp. 91–105, 2019.
  17.  A. Pręgowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid”, J. Theor. Appl. Mech., vol. 51, no. 4, pp. 979–992, 2013.
  18.  R. Lasota, R. Stocki, P. Tauzowski, and T. Szolc, ”Polynomial chaos expansion method in estimating probability distribution of rotor-shaft dynamic responses”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 1, pp. 413–422, 2015.
  19.  Y. Ma, Z. Liang, M. Chen, and J. Hong, “Interval analysis of rotor dynamic response with uncertain parameters”, J. Sound Vib., vol. 332, pp. 3869–3880, 2013.
  20.  Z. Qiu and X. Wang, “Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis”, Int. J. Solids Struct., vol. 42, pp. 4958–4970, 2005.
  21.  Ch. Fu, Y. Xu, Y. Yang, K. Lu, F. Gu, and A. Ball, “Response analysis of an accelerating unbalanced rotating system with both random and interval variables”, J. Sound Vib., vol. 466, p. 115047, 2020.






DOI: 10.24425/bpasts.2021.137987