Details
Title
Thermal and mechanical properties of lightweight concrete with waste copper slag as fine aggregateJournal title
Archives of Civil EngineeringYearbook
2021Volume
vol. 67Issue
No 3Authors
Affiliation
Jaskulski, Roman : Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland ; Dolny, Piotr : Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, Poland ; Yakymechko, Yaroslav : Warsaw University of Technology, Faculty of Civil Engineering, Mechanics and Petrochemistry, ul. Łukasiewicza 17, 09-400 Płock, PolandKeywords
lightweight concrete ; waste copper slag ; thermal properties ; sustainable building materialsDivisions of PAS
Nauki TechniczneCoverage
299-318Publisher
WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCESBibliography
[1] L.H. Hawkins, “The influence of air ions, temperature and humidity on subjective wellbeing and comfort”, Journal of Environmental Psychology 1: pp. 279–292, 1981. https://doi.org/10.1016/S0272-4944(81)80026-6
[2] U. Franck, M. Krüger, N. Schwarz, K. Grossmann, S. Röder, U. Schlink, “Heat stress in urban areas: Indoor and outdoor temperatures in different urban structure types and subjectively reported well-being during a heat wave in the city of Leipzig”, Meteorologische Zeitschrift 22: pp. 167–177, 2013. https://doi.org/10.1127/0941-2948/2013/0384
[3] L. Pérez-Lombard, J. Ortiz, C. Pout, “A review on buildings energy consumption information”, Energy and Buildings 40: 394–398, 2008. https://doi.org/10.1016/j.enbuild.2007.03.007
[4] H. Oktay, R. Yumrutaş, A. Akpolat, “Mechanical and thermophysical properties of lightweight aggregate concretes”, Construction and Building Materials 96: pp. 217–225, 2015. https://doi.org/10.1016/j.conbuildmat.2015.08.015
[5] D. Chwieduk, “Prospects for low energy buildings in Poland", Renewable Energy 16: pp. 1196–1199, 1999. https://doi.org/10.1016/S0960-1481(98)00472-8
[6] R. Baetens, B.P. Jelle, A. Gustavsen, “Aerogel insulation for building applications: A state-of-the-art review”, Energy and Buildings 43: pp. 761–769, 2011. https://doi.org/10.1016/j.enbuild.2010.12.012
[7] A. Soleimani Dorcheh, M.H. Abbasi, “Silica aerogel; synthesis, properties and characterization”, Journal of Materials Processing Technology 199: 10–26, 2008. https://doi.org/10.1016/j.jmatprotec.2007.10.060
[8] K. Prałat, W. Kubissa, R. Jaskulski, J. Ciemnicka, “Influence of selected micro additives content on thermal properties of gypsum”, Architecture Civil Engineering Environment 12: pp. 69–79, 2019. https://doi.org/10.21307/ACEE-2019-037
[9] S. Ng, B.P. Jelle, L.I.C. Sandberg, T. Gao, Ó.H. Wallevik, “Experimental investigations of aerogel-incorporated ultra-high performance concrete”, Construction and Building Materials 77: pp. 307–316, 2015. https://doi.org/10.1016/j.conbuildmat.2014.12.064
[10] J. Strzałkowski, H. Garbalińska, “Thermal and strength properties of lightweight concretes with the addition of aerogel particles”, Advances in Cement Research 28: pp. 567–575, 2016. https://doi.org/10.1680/jadcr.16.00032
[11] M.G. Gomes, I. Flores-Colen, F. da Silva, M. Pedroso, “Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods”, Construction and Building Materials 172: pp. 696–705, 2018. https://doi.org/10.1016/j.conbuildmat.2018.03.162
[12] C. Buratti, E. Moretti, E. Belloni, F. Agosti, “Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation”, Sustainability 6: pp. 5839–5852, 2014. https://doi.org/10.3390/su6095839
[13] K. Łuczaj, P. Urbańska, „Certyd - nowe, lekkie, wysokowytrzymałe kruszywo spiekane”, Materiały Budowlane 1: pp. 44–47, 2015. https://doi.org/10.15199/33.2015.12.13
[14] P. Olszak, „Lekkie kruszywa CERTYD – unikatowym wyrobem budowlanym”, Kruszywa: Produkcja - Transport - Zastosowanie 5: pp. 38–42, 2016.
[15] Z. Suchorab, D. Barnat-Hunek, M. Franus, G. Łagód, “Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge”, Materials 9: p. 317, 2016. https://doi.org/10.3390/ma9050317
[16] A. Bouguerra, A. Ledhem, F. de Barquin, R.M. Dheilly, M. Quéneudec, “Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates”, Cement and Concrete Research 28: pp. 1179–1190, 1998. https://doi.org/10.1016/S0008-8846(98)00075-1
[17] D.K. Panesar, “Cellular concrete properties and the effect of synthetic and protein foaming agents”, Construction and Building Materials 44: pp. 575–584, 2013. https://doi.org/10.1016/j.conbuildmat.2013.03.024
[18] F.J. Blanco, P. Garciéa, P. Mateos, J.M. Ayala, “Characteristics and properties of lightweight concrete manufactured with cenospheres”, Cement and Concrete Research 30: pp. 1715–1722, 2000. https://doi.org/10.1016/S0008-8846(00)00357-4
[19] T. Lecompte, P. Le Bideau, P. Glouannec, D. Nortershauser, S. Le Masson, “Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material”, Energy and Buildings 94: pp. 52–60, 2015. https://doi.org/10.1016/j.enbuild.2015.02.044
[20] V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, J.F. Rodriguez, M. Carmona, N. Al-Manasir, A.-L. Kjøniksen, “Microencapsulated phase change materials for enhancing the thermal performance of Portland cement concrete and geopolymer concrete for passive building applications”, Energy Conversion and Management 133: pp. 56–66, 2017. https://doi.org/10.1016/j.enconman.2016.11.061
[21] N.P. Sharifi, A. Sakulich, “Application of phase change materials to improve the thermal performance of cementitious material”, Energy and Buildings 103: pp. 83–95, 2015. https://doi.org/10.1016/j.enbuild.2015.06.040
[22] P. Sukontasukkul, P. Uthaichotirat, T. Sangpet, K. Sisomphon, M. Newlands, A. Siripanichgorn, P. Chindaprasirt, “Thermal properties of lightweight concrete incorporating high contents of phase change materials”, Construction and Building Materials 207: pp. 431–439, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.152
[23] P. Bamonte, A. Caverzan, N. Kalaba, M. Lamperti Tornaghi, “Lightweight Concrete Containing Phase Change Materials (PCMs): A Numerical Investigation on the Thermal Behaviour of Cladding Panels”, Buildings 7: p. 35, 2017. https://doi.org/10.3390/buildings7020035
[24] M. Kheradmand, J. Castro-Gomes, M. Azenha, P.D. Silva, J.L.B. de Aguiar, S.E. Zoorob, “Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems”, Construction and Building Materials 89: pp. 48–59, 2015. https://doi.org/10.1016/j.conbuildmat.2015.04.031
[25] P. Suttaphakdee, N. Dulsang, N. Lorwanishpaisarn, P. Kasemsiri, P. Posi, P. Chindaprasirt, “Optimizing mix proportion and properties of lightweight concrete incorporated phase change material paraffin/recycled concrete block composite”, Construction and Building Materials 127: pp. 475–483, 2016. https://doi.org/10.1016/j.conbuildmat.2016.10.037
[26] R. Ji, Y. He, Z. Zhang, L. Liu, X. Wang, “Preparation and modeling of energy-saving building materials by using industrial solid waste”, Energy and Buildings 97: 6–12, 2015. https://doi.org/10.1016/j.enbuild.2015.02.015
[27] Ł. Majewski, R. Jaskulski, W. Kubissa, Influence of partial replacement of sand with copper slag on the thermal properties of hardened concrete, in: Selected Papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”, 16–17 May, 2019, Vilnius, Lithuania, 2019: pp. 94–101. https://doi.org/10.3846/mbmst.2019.131
[28] R. Jaskulski, P. Reiterman, W. Kubissa, Investigation of thermal properties of concrete with recycled aggregate and concrete with copper slag and supplementary cementing materials, in: I. Hager (Ed.), Energy Efficient, Sustainable Building Materials and Products, Cracow University of Technology, Cracow, 2017: pp. 283–302.
[29] W. Kubissa, R. Jaskulski, D. Gil, I. Wilińska, “Holistic Analysis of Waste Copper Slag Based Concrete by Means of EIPI Method”, Buildings 10: 1, 2019. https://doi.org/10.3390/buildings10010001
[30] R. Jaskulski, W. Kubissa, Mechanical properties of copper slag waste based CLSM mixtures, in: Selected Papers of the 13th International Conference “Modern Building Materials, Structures and Techniques”, 16–17 May, 2019, Vilnius, Lithuania, Vilnius, Lithuania, 2019: pp. 67–73. https://doi.org/10.3846/mbmst.2019.021
[31] W. Kubissa, R. Jaskulski, “Improving of concrete tightness by using surface blast-cleaning waste as a partial replacement of fine aggregate”, Periodica Polytechnica Civil Engineering 63: pp. 1193–1203, 2019. https://doi.org/10.3311/PPci.14512
[32] W. Kubissa, R. Jaskulski, J. Szpetulski, A. Gabrjelska, E. Tomaszewska, Utilization of fine recycled aggregate and the calcareous fly ash in CLSM manufacturing, in: Advanced Materials Research, 2014: pp. 199–204. https://doi.org/10.4028/www.scientific.net/AMR.1054.199
[33] R. Jaskulski, W. Kubissa, Lightweight concrete with copper slag waste as sand substitution, in: MATEC Web of Conferences, 2018. https://doi.org/10.1051/matecconf/201816303006
[34] W. Kubissa, R. Jaskulski, T. Simon, “Surface blast-cleaning waste as a replacement of fine aggregate in concrete”, Architecture Civil Engineering Environment 3: pp. 89–94, 2017. https://doi.org/10.21307/acee-2017-038
[35] R. Siddique, M. Singh, M. Jain, “Recycling copper slag in steel fibre concrete for sustainable construction”, Journal of Cleaner Production, 122559, 2020. https://doi.org/10.1016/j.jclepro.2020.122559
[36] K. Murari, R. Siddique, K.K. Jain, “Use of waste copper slag, a sustainable material”, Journal of Material Cycles and Waste Management 17: pp. 13–26, 2015. https://doi.org/10.1007/s10163-014-0254-x
[37] S.K. Kirthika, S.K. Singh, A. Chourasia, “Alternative fine aggregates in production of sustainable concrete- A review”, Journal of Cleaner Production, 122089, 2020. https://doi.org/10.1016/j.jclepro.2020.122089
[38] C. Tasdemir, O. Sengul, M.A. Tasdemir, “A comparative study on the thermal conductivities and mechanical properties of lightweight concretes”, Energy and Buildings 151: pp. 469–475, 2017. https://doi.org/10.1016/j.enbuild.2017.07.013
[39] K. Lo-shu, S. Man-qing, S. Xing-sheng, L. Yun-xiu, “Research on several physico-mechanical properties of lightweight aggregate concrete”, International Journal of Cement Composites and Lightweight Concrete 2: pp. 185–191, 1980. https://doi.org/10.1016/0262-5075(80)90036-6
[40] S.E. Gustafsson, “A Non-Steady-State Method of Measuring the Thermal Conductivity of Transparent Liquids”, Zeitschrift Für Naturforschung A 22: pp. 1005–1011, 1967. https://doi.org/10.1515/zna-1967-0704
[41] S.E. Gustafsson, “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials”, Review of Scientific Instruments 62: pp. 797–804, 1991. https://doi.org/10.1063/1.1142087
[42] M.G. Gomes, I. Flores-Colen, H. Melo, A. Soares, “Physical performance of industrial and EPS and cork experimental thermal insulation renders”, Construction and Building Materials 198: pp. 786–795, 2019. https://doi.org/10.1016/j.conbuildmat.2018.11.151
[43] N. Latroch, A.S. Benosman, N.-E. Bouhamou, Y. Senhadji, M. Mouli, “Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride”, Construction and Building Materials 175: pp. 77–87, 2018. https://doi.org/10.1016/j.conbuildmat.2018.04.173
[44] M. Záleská, M. Pavlíková, J. Pokorný, O. Jankovský, Z. Pavlík, R. Černý, “Structural, mechanical and hygrothermal properties of lightweight concrete based on the application of waste plastics”, Construction and Building Materials 180: pp. 1–11, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.250
[45] R. Jaskulski, M.A. Glinicki, W. Kubissa, M. Dąbrowski, “Application of a non-stationary method in determination of the thermal properties of radiation shielding concrete with heavy and hydrous aggregate”, International Journal of Heat and Mass Transfer 130: pp. 882–892, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.050
[46] R. Jaskulski, W. Kubissa, P. Reiterman, O. Holčapek, Thermal properties of heavy concrete for small pre-cast shielding elements, in: Special Concrete and Composites 2019: 16th International Conference, 2020: p. 20011. https://doi.org/10.1063/5.0000358
[47] H. Uysal, R. Demirboğa, R. Şahin, R. Gül, “The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete”, Cement and Concrete Research 34: pp. 845–848, 2004. https://doi.org/10.1016/j.cemconres.2003.09.018
[48] J. Kuterasińska, A. Król, „Żużel pomiedziowy jako surowiec w produkcji alkalicznie aktywowanych spoiw żużlowych”, Prace Instytutu Ceramiki i Materiałów Budowlanych 7: pp. 21–36, 2014.
[49] P. Gambal, Wpływ struktury żużla pomiedziowego z pieca elektrycznego na wybrane cechy matrycy cementowej, Politechnika Poznańska, 2013.
[50] L. Janecka, B. Weryński, „Wykorzystanie odpadu przemysłowego – zużytego ścierniwa POLGRIT do produkcji cementu”, Prace Instytutu Szkła, Ceramiki, Materiałów Ogniotrwałych I Budowlanych 1: pp. 39–50, 2008.
[51] J. Rzechuła, Gospodarcze wykorzystanie odpadowego ścierniwa z żużla pomiedziowego, in: A. Łuszczkiewicz (Ed.), Fizykochemiczne Problemy Mineralurgii, Z. 28, Politechnika Wrocławska, Wrocław, 1994: pp. 207–218.
[52] A. Duszyński, W. Jasiński, A. Pryga-Szulc, „Aggregates from granulated copper slag as a component for road construction mixtures”, Biuletyn Państwowego Instytutu Geologicznego pp. 85–92, 2017. https://doi.org/10.5604/01.3001.0010.0074