Details
Title
Experimental investigation into material characteristics of pea gravelJournal title
Archives of Civil EngineeringYearbook
2021Volume
vol. 67Issue
No 3Authors
Affiliation
Zhang, Jinliang : Yellow River Engineering Consulting Co., Ltd. Zhengzhou, Henan, China ; Huang, Qiuxiang : State Key Lab of Geohazard Prevention and Environment Protection (SKLGP), Chengdu University of Technology (CDUT), Chengdu, Sichuan, China ; Hu, Chao : State Key Lab of Geohazard Prevention and Environment Protection (SKLGP), Chengdu University of Technology (CDUT), Chengdu, Sichuan, China ; Wang, Zhiqiang : Yellow River Engineering Consulting Co., Ltd. Zhengzhou, Henan, ChinaKeywords
pea gravel ; morphological properties ; uncompacted void content ; compressive strength ; digital image processing ; shield TBMDivisions of PAS
Nauki TechniczneCoverage
415-435Publisher
WARSAW UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING and COMMITTEE FOR CIVIL ENGINEERING POLISH ACADEMY OF SCIENCESBibliography
[1] EFNARC. Specification and guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock. www.efnarc.org. 2005.
[2] Maidl B., Herrenknecht M., Maidl U., Wehrmeyer G. Mechanised shield tunnelling / 2nd ed. Ernst & Sohn, 2011.
[3] Pelizza S., Peila D., Borio L., Dal Negro E., Schulkins R. and Boscaro A. Analysis of the Performance of Two Component Back-filling Grout in Tunnel Boring Machines Operating under Face Pressure. Proceedings of ITAAITES World Tunnel Congress 2010: “Tunnel vision towards 2020”, Vancouver, May (2010), pp. 14–20.
[4] Maidl O. I. H. C. M. B., Schmid L., Ritz W., et al. Hardrock Tunnel Boring Machines. Ernst & Sohn, 2008. https://doi.org/10.1002/9783433600122
[5] Peila D., Luca B., Sebastiano P. The behaviour of a two-component backfilling grout used in a tunnel-boring machine. Acta Geotechnica Slovenica, 2011.
[6] Thewes M., Budach C. Grouting of the annular gap in shield tunnelling – an important factor for minimisation of settlements and production performance. Proceedings of the Ita, 2009.
[7] Henzinger M. R., Radončić N., Moritz B. A., et al. Backfill of segmental lining – State of the art, redistribution behaviour of pea gravel, possible improvements / Tübbingbettung – Stand der Technik, Umlagerungsverhalten von Perlkies, Verbesserungspotenzial. Geomechanik Und Tunnelbau. 9 (3): pp. 188–199, 2016.
[8] Lanaro F., Tolppanen P. 3D characterization of coarse aggregates. Engineering Geology. 65 (1): pp. 17–30, 2002. https://doi.org/10.1016/S0013-7952(01)00133-8
[9] Sengul Ö., Tasdemir C., Tasdemir M. A. Influence of aggregate type on mechanical behaviour of normal and high-strength concretes. ACI Mater J. 99 (6): pp. 528–533, 2002.
[10] Goble C. F., Cohen M. D. Influence of aggregate surface area on mechanical properties of mortar. ACI Mater J. 96 (6): pp. 657–662, 1999.
[11] Mehta P. K., Ezeldin A. S., Aitcin P. C. Effect of coarse aggregate on the behavior of normal and high-strength concretes. Cement Concrete and Aggregates. 13(2): p. 4, 1991. https://doi.org/10.1520/CCA10128J
[12] Cetin A., Carrasquillo R. L. High-performance concrete: influence of coarse aggregates on mechanical properties. ACI Mater J. 95 (3): pp. 252–261, 1998.
[13] Zhou F. P., Lydon F. D., Barr BIG. Effect of coarse aggregate on elastic modulus and compressive strength of high-performance concrete. Cem Concr Res. 25 (1): pp. 177–186, 1995. https://doi.org/10.1016/0008- 8846(94)00125-I
[14] Uddin M. T., Mahmood A. H. Effects of maximum aggregate size on upv of brick aggregate concrete. Ultrasonics. 69: pp. 129–136, 2016. https://doi.org/10.1016/j.ultras.2016.04.006
[15] Kawamoto R., Andrade J., Matsushima T. A 3-D mechanics-based particle shape index for granular materials. Mechanics Research Communications. 92: 67–73, 2018. https://doi.org/10.1016/j.mechrescom.2018.07.002
[16] Wu J., Wang L., Hou Y., et al. A digital image analysis of gravel aggregate using CT scanning technique. International Journal of Pavement Research and Technology. 11 (2): pp. 160–167, 2018. https://doi.org/10.1016/j.ijprt.2017.08.002
[17] Nikbin I. M., Beygi M. H. A., Kazemi M. T., et al. A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete. Materials & Design. 59: pp. 199–210, 2014. https://doi.org/10.1016/j.matdes.2014.02.054
[18] Masad E., Jandhyala V. K., Dasgupta N., Somadevan N., Shashidhar N. Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J Mater Civil Eng. 14 (2): pp. 122–129, 2002. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)
[19] Meddah M. S., Zitouni S., Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater. 24 (4): pp. 505–512, 2010. https://doi.org/10.1016/j.conbuildmat.2009.10.009
[20] Masad E., Button J. W. Unified imaging approach for measuring aggregate angularity and texture. Comput-Aided Civil Infrastruct Eng. 15: pp. 273–280, 2000. https://doi.org/10.1111/0885-9507.00191
[21] Caliskan S., Karihaloo B. L. Effect of surface roughness, type and size of model aggregates on the bond strength of aggregate/mortar interface. Interface Science. 12(4): pp. 361–374, 2004. https://doi.org/10.1023/B:INTS.0000042334.43266.62
[22] Zhang D., Huang X., Zhao Y. Investigation of the shape, size, angularity and surface texture properties of coarse aggregates. Constr Build Mater. 34: pp. 330–336, 2012. https://doi.org/10.1016/j.conbuildmat.2012.02.096
[23] Masad E., Muhunthan B., Shashidhar N., Harman T. Internal structure characterization of asphalt concrete using image analysis. Journal of Computing in Civil Engineering. 13 (2): pp. 88–95, 1999. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(88)
[24] Mora C., Kwan A. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement & Concrete Research. 30 (3): pp. 351–358, 2000. https://doi.org/10.1016/S0008- 8846(99)00259-8
[25] Roussillon T., Piégay H., Sivignon I., Tougne L., Lavigne F. Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 35: pp. 1992–2000, 2009. https://doi.org/10.1016/j.cageo.2009.01.013
[26] Al-Rousan T., Masad E., Tutumluer E., Pan T. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Constr Build Mater. 21 (5): pp. 978–990, 2007. https://doi.org/10.1016/j.conbuildmat.2006.03.005
[27] Rao C., Tutumluer E., Kim I. T. Quantification of coarse aggregate angularity based on image analysis. Transport Res Rec. 1787: pp. 117–124, 2002. https://doi.org/10.3141/1787-13
[28] Drevin G. R. Computational methods for the determination of roundness of sedimentary particles. Math. Geol. 38: pp. 871–890, 2007. https://doi.org/10.1007/s11004-006-9051-y
[29] Montenegro Ríos A., Sarocchi D., Nahmad-Molinari Y., Borselli L. Form from projected shadow (FFPS): an algorithm for 3D shape analysis of sedimentary particles. Comput. Geosci. 60: pp. 98–108, 2013. https://doi.org/10.1016/j.cageo.2013.07.008
[30] Hayakawa Y., Oguchi T. Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci. 31: pp. 735–741, 2005. https://doi.org/10.1016/j.cageo.2005.01.004
[31] Lin C. L., Miller J. D. 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technol. 154: pp. 61–69, 2005. https://doi.org/10.1016/j.powtec.2005.04.031
[32] Zhao B., Wang J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 291: pp. 262–275, 2016. https://doi.org/10.1016/j.powtec.2015.12.029
[33] Mathieu C., Hervé, Piégay, Jéro��me, Lavé, Lise V., Danang H. S., Sandy W. B., et al. Evaluating a 2d image-based computerized approach for measuring riverine pebble roundness. Geomorphology. 311: pp. 143–157, 2018. https://doi.org/10.1016/j.geomorph.2018.03.020
[34] Koohmishi M., Palassi M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15–25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
[35] Ding, X., Ma, T., Gao, W. Morphological characterization and mechanical analysis for coarse aggregate skeleton of asphalt mixture based on discrete-element modeling. Construction & Building Materials, 154 (Nov. 15): pp. 1048–1061, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.008
[36] Janoo, V. C., Bayer, J. J. The effect of aggregate angularity on base course performance. Effect of Aggregate Angularity on Base Course Performance. 2001.
[37] Jebli, M., Jamin, F., Malachanne, E., Garcia-Diaz, E., Youssoufi, M. E. Experimental characterization of mechanical properties of the cement-aggregate interface in concrete. Construction & Building Materials, 161 (Feb. 10): pp. 16–25, 2017. https://doi.org/10.1051/epjconf/201714012014
[38] Gu, X., Li, H., Wang, Z., Feng, L. Experimental study and application of mechanical properties for the interface between cobblestone aggregate and mortar in concrete – science direct. Construction and Building Materials, 46(46): pp. 156–166, 2013. https://doi.org/10.1016/j.conbuildmat.2013.04.028
[39] Koohmishi, M., Palassi, M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15–25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
[40] Siregar A. P. N., Rafiq M. I., Mulheron M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Constr Build Mater. 150: pp. 252–259, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.142