Tytuł artykułu

Tensile validation tests with failure criteria comparison for various GFRP laminates

Tytuł czasopisma

Archives of Civil Engineering




vol. 67


No 3


Wiczenbach, Tomasz : Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12, 80-233 Gdańsk ; Ferenc, Tomasz : Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gabriela Narutowicza 11/12, 80-233 Gdańsk


Słowa kluczowe

composite structure ; failure criteria ; GFRP laminate ; Unidirectional test ; validation

Wydział PAN

Nauki Techniczne






[1] H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
[2] E. Barbero, J. Fernández-Sáez, and C. Navarro, “Statistical analysis of the mechanical properties of composite materials,” Composites Part B: Engineering, vol. 31, no. 5, pp. 375–381, Jul. 2000.
[3] J. Chróścielewski, T. Ferenc, T. Mikulski, M. Miśkiewicz, and Ł. Pyrzowski, “Numerical modeling and experimental validation of full-scale segment to support design of novel GFRP footbridge,” Composite Structures, vol. 213, pp. 299–307, Apr. 2019.
[4] P. Colombi and C. Poggi, “An experimental, analytical and numerical study of the static behavior of steel beams reinforced by pultruded CFRP strips,” Composites Part B: Engineering, vol. 37, no. 1, pp. 64–73, Jan. 2006.
[5] S. C. M. D’Aguiar and E. Parente Junior, “Local buckling and post-critical behavior of thin-walled composite channel section columns,” Latin American Journal of Solids and Structures, vol. 15, no. 7, Jul. 2018.
[6] I. Danilov, “Some Aspects of CFRP Steel Structures Reinforcement in Civil Engineering,” Procedia Engineering, vol. 153, pp. 124–130, 2016.
[7] J. Di, L. Cao, and J. Han, “Experimental Study on the Shear Behavior of GFRP–Concrete Composite Beam Connections,” Materials, vol. 13, no. 5, p. 1067, Feb. 2020.
[8] H. M. Elsanadedy, Y. A. Al-Salloum, S. H. Alsayed, and R. A. Iqbal, “Experimental and numerical investigation of size effects in FRP-wrapped concrete columns,” Construction and Building Materials, vol. 29, pp. 56–72, Apr. 2012.
[9] T. Ferenc, Ł. Pyrzowski, J. Chróścielewski, and T. Mikulski, “Sensitivity analysis in design process of sandwich U-shaped composite footbridge,” in Shell Structures: Theory and Applications Volume 4, CRC Press, pp. 413–416, 2017.
[10] R. Haj-Ali and H. Kilic, “Non-linear behavior of pultruded FRP composites,” Composites Part B: Engineering, vol. 33, no. 3, pp. 173–191, Apr. 2002.
[11] M. Heshmati, R. Haghani, and M. Al-Emrani, “Environmental durability of adhesively bonded FRP/steel joints in civil engineering applications: State of the art,” Composites Part B: Engineering, vol. 81, pp. 259–275, Nov. 2015.
[12] K. Kaw, Mechanics of Composite Materials. CRC Press, 2005.
[13] M. Klasztorny, D. B. Nycz, R. K. Romanowski, P. Gotowicki, A. Kiczko, and D. Rudnik, “Effects of Operating Temperatures and Accelerated Environmental Ageing on the Mechanical Properties of a Glass-Vinylester Composite,” Mechanics of Composite Materials, vol. 53, no. 3, pp. 335–350, Jul. 2017.
[14] I. Kreja, “A literature review on computational models for laminated composite and sandwich panels,” Open Engineering, vol. 1, no. 1, Jan. 2011.
[15] S. Moy, “Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications,” in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, pp. 177–204, 2013.
[16] J. N. Reddy, “Theory and Analysis of Laminated Composite Plates,” in Mechanics of Composite Materials and Structures, Dordrecht: Springer Netherlands, pp. 1–79, 1999.
[17] J. N. Reddy, “A Simple Higher-Order Theory for Laminated Composite Plates,” Journal of Applied Mechanics, vol. 51, no. 4, pp. 745–752, Dec. 1984.
[18] M. Rostami, K. Sennah, and S. Hedjazi, “GFRP Bars Anchorage Resistance in a GFRP-Reinforced Concrete Bridge Barrier,” Materials, vol. 12, no. 15, p. 2485, Aug. 2019.
[19] A. Sabik and I. Kreja, “Linear analysis of laminated multilayered plates with the application of zig-zag function,” Archives of Civil and Mechanical Engineering, vol. 8, no. 4, pp. 61–72, Jan. 2008.
[20] P. P. Sankholkar, C. P. Pantelides, and T. A. Hales, “Confinement Model for Concrete Columns Reinforced with GFRP Spirals,” Journal of Composites for Construction, vol. 22, no. 3, p. 04018007, Jun. 2018.
[21] Wen and S. Yazdani, “Anisotropic damage model for woven fabric composites during tension–tension fatigue,” Composite Structures, vol. 82, no. 1, pp. 127–131, Jan. 2008.
[22] H. Xin, Y. Liu, A. S. Mosallam, J. He, and A. Du, “Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates,” Composite Structures, vol. 182, pp. 283–300, Dec. 2017.
[23] H. Xin, A. Mosallam, Y. Liu, C. Wang, and Y. Zhang, “Analytical and experimental evaluation of flexural behavior of FRP pultruded composite profiles for bridge deck structural design,” Construction and Building Materials, vol. 150, pp. 123–149, Sep. 2017.
[24] J. E. Yetman, A. J. Sobey, J. I. R. Blake, and R. A. Shenoi, “Mechanical and fracture properties of glass vinylester interfaces,” Composites Part B: Engineering, vol. 130, pp. 38–45, Dec. 2017.
[25] S. Zhang, C. Caprani, and A. Heidarpour, “Influence of fibre orientation on pultruded GFRP material properties,” Composite Structures, vol. 204, pp. 368–377, Nov. 2018.
[26] Determination of tensile properties of plastics. Part 1: General principles, Geneva, Switzerland, 1993.






DOI: 10.24425/ace.2021.138069 ; e-ISSN 2300-3103