Details
Title
On elastic contact problems of micro-periodic slant layered composite pressed by a rigid punch with a parabolic or rectangular shapeJournal title
Bulletin of the Polish Academy of Sciences: Technical SciencesYearbook
2021Volume
69Issue
6Authors
Affiliation
Sebestianiuk, Piotr : Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland ; Perkowski, Dariusz M. : Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland ; Kulchytsky-Zhyhailo, Roman : Faculty of Mechanical Engineering, Białystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, PolandKeywords
contact problem ; micro-periodic composite ; punch shapeDivisions of PAS
Nauki TechniczneCoverage
e138091Bibliography
- G.M.L. Gladwell, Contact Problems in the Classical Theory of Elasticity. Springer Netherlands, 1980. [Online]. Available: https://books. google.pl/books?id=Y3-Ju0WQ6msC.
- J.R. Barber, “Hertzian Contact”, in Solid Mechanics and its Applications, vol. 250, Springer Verlag, 2018, pp. 29‒41, doi: 10.1007/978- 3-319-70939-0_3.
- A. Sackfield and D.A. Hills, “Some useful results in the classical hertz contact problem”, J. Strain Anal. Eng. Des., vol. 18, no. 2, pp.101–105, 1983, doi: 10.1243/03093247V182101.
- S.J. Chidlow and M. Teodorescu, “Two-dimensional contact mechanics problems involving inhomogeneously elastic solids split into three distinct layers”, Int. J. Eng. Sci., vol. 70, pp. 102–123, 2013, doi: 10.1016/j.ijengsci.2013.05.004.
- D. Pączka, “Elastic contact problem with Coulomb friction and normal compliance in Orlicz spaces”, Nonlinear Anal. Real World Appl., vol. 45, pp. 97–115, Feb. 2019, doi: 10.1016/J.NONRWA.2018.06.009.
- C. Peijian, C. Shaohua, and P. Juan, “Sliding Contact Between a Cylindrical Punch and a Graded Half-Plane With an Arbitrary Gradient Direction”, J. Appl. Mech., vol. 82, no. 4, pp. 41008–41009, Apr. 2015, doi: 10.1115/1.4029781.
- K.B. Yilmaz, I. Comez, B. Yildirim, M.A. Güler, and S. El-Borgi, “Frictional receding contact problem for a graded bilayer system in- dented by a rigid punch”, Int. J. Mech. Sci., vol. 141, pp. 127–142, 2018, doi: 10.1016/j.ijmecsci.2018.03.041.
- D.M. Perkowski, R. Kulchytsky-Zhyhailo, and W. Kołodziejczyk, “On axisymmetric heat conduction problem for multilayer graded coated half-space”, J. Theor. Appl. Mech., vol. 56, no. 1, pp. 147–156, 2018, doi: 10.15632/jtam-pl.56.1.147.
- O. Arslan and S. Dag, “Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile”, Int. J. Mech. Sci., vol. 135, pp. 541–554, 2018, doi: 10.1016/j.ijmecsci.2017.12.017.
- T.-J. Liu, Y.-S. Wang, and Y.-M. Xing, “The axisymmetric partial slip contact problem of a graded coating”, Meccanica, vol. 47, no. 7, pp. 1673–1693, 2012, doi: 10.1007/s11012-012-9547-0.
- M. Kot, J. Lackner, and L. Major, “Microscale interpretation of tribological phenomena in Ti/TiN soft-hard multilayer coatings on soft austenite steel substrates”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 59, no. 3, pp. 343–355, 2011, doi: 10.2478/v10175-011-0042-x.
- R. Kulchytsky-Zhyhailo, S.J. Matysiak, and D.M. Perkowski, “On displacements and stresses in a semi-infinite laminated layer: Com- parative results”, Meccanica, vol. 42, no. 2, pp. 117–126, Mar. 2007, doi: 10.1007/s11012-006-9026-6.
- D.M. Perkowski, S.J. Matysiak, and R. Kulchytsky-Zhyhailo, “On contact problem of an elastic laminated half-plane with a boundary normal to layering”, Compos. Sci. Technol., vol. 67, no. 13, pp. 2683–2690, Oct. 2007, doi: 10.1016/j.compscitech.2007.02.013.
- M.-J. Pindera and M.S. Lane, “Frictionless Contact of Layered Half-Planes, Part II: Numerical Results”, J. Appl. Mech., vol. 60, no. 3, pp. 640–645, 1993, doi: 10.1115/1.2900852.
- C. Woźniak, “A nonstandard method of modelling of thermoelastic periodic composites”, Int. J. Eng. Sci., vol. 25, no. 5, pp. 483–498, Jan. 1987, doi: 10.1016/0020-7225%2887%2990102-9.
- S. Timoshenko, “Goodier. JN, Theory of Elasticity”, New. York McGraw—Hil1, vol. 970, no. 4, pp. 279–291, 1970.
- S.J. Matysiak and C.Z. Woźniak, “Micromorphic effects in a modelling of periodic multilayered elastic composites”, Int. J. Eng. Sci., vol. 25, no. 5, pp. 549–559, Jan. 1987, doi: 10.1016/0020-7225%2887%2990106-6.
- A. Kaczyński and S.J. Matysiak, “Plane contact problems for a periodic two-layered elastic composite”, Ingenieur-Archiv, vol. 58, no. 2, pp. 137–147, Mar. 1988, doi: 10.1007/BF00536233.
- I.N. Sneddon, “Integral transform methods”, in Methods of analysis and solutions of crack problems: Recent developments in fracture mechanics Theory and methods of solving crack problems, G.C. Sih, Ed. Dordrecht: Springer Netherlands, 1973, pp. 315–367, doi: 10.1007/978-94-017-2260-5_6.
- R. Kulchytsky-Zhyhailo and W. Kolodziejczyk, “On axisymmetrical contact problem of pressure of a rigid sphere into a periodically two-layered semi-space”, Int. J. Mech. Sci., vol. 49, no. 6, pp. 704–711 2007, doi: 10.1016/j.ijmecsci.2006.10.007.
- P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky- Zhyhailo, “On Contact problem for the microperiodic composite half-plane with slant layering”, Int. J. Mech. Sci., vol. 182, p. 1057342020, doi: 10.1016/j.ijmecsci.2020.105734.
- P. Sebestianiuk, D.M. Perkowski, and R. Kulchytsky-Zhyhailo, “On stress analysis of load for microperiodic composite half-plane with slant lamination”, Meccanica, vol. 54, pp. 573–593 2019, doi: 10.1007/s11012-019-00970-z.
- I.Y. Shtaerman, “Contact Problems of the Theory of Elasticity (FTD-MT-24-61-70)”, vol. 55, no. 6, pp. 887–901, 1970.
- M. Sadowsky, “Zweidimensionale Probleme der Elastizitätstheorie”, ZAMM – J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech., vol. 8, no. 2, pp. 107–121, 1928, doi: 10.1002/zamm.19280080203.
- L.A. Galin, Contact Problems in the Theory of Elasticity. Department of Mathematics, School of Physical Sciences and Applied Mathe- matics, North Carolina State College, 1961. [Online]. Available: https://books.google.pl/books?id=9F-4QgAACAAJ.
- I.S. Gradshteyn, I.M. Ryzhik, and R.H. Romer, “Tables of Integrals, Series, and Products”, Am. J. Phys., vol. 56, p. 958, 1988, doi: 10.1119/1.15756.