Details

Title

Passive cooling through the atmospheric window for vehicle temperature control

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 3

Affiliation

Khan, Umara : Abo Akademi University, Process and Systems Engineering Laboratory, Henrikinkatu 2, 20500 Turku, Finland ; Zevenhoven, Ron : Abo Akademi University, Process and Systems Engineering Laboratory, Henrikinkatu 2, 20500 Turku, Finland

Authors

Keywords

Thermal radiation ; Passive cooling ; Vehicle Skylight ; greenhouse effect ; Computational Fluid Dynamics

Divisions of PAS

Nauki Techniczne

Coverage

25-44

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Welstand J.S., Haskew H.H., Gunst R.F., Bevilacqua O.M.: Evaluation of the effects of air conditioning operation and associated environmental conditions on vehicle emissions and fuel economy. SAE Tech. Pap. (2003), 2003-01-2247.
[2] Lambert M.A., Jones B.J.: Automotive adsorption air conditioner powered by exhaust heat. Part 1: Conceptual and embodiment design. P.I. Mech. Eng. D-J. Aut. Eng. Vol. 220(2006), 7, 959–972.
[3] Johnson V.H.: Fuel used for vehicle air conditioning: A state-by-state thermal comfort-based approach. SAE Tech. Pap. (2002), 2002-01-1957.
[4] Fayazbakhsh M., Bahrami M.: Comprehensive modeling of vehicle air conditioning loads using heat balance method. SAE Tech. Pap. (2013), 2013-01-1507.
[5] Zevenhoven R., Fält M.: Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach. Energy 152(2018), 27–33.
[6] Zevenhoven R., Fält M., Gomes L.P.: Thermal radiation heat transfer: Including wavelength dependence into modelling. Int. J. Therm. Sci. 86(2014), 189–197.
[7] Fält M., Pettersson F.: Modified predator-prey algorithm approach to designing a cooling or insulating skylight. Build. Environ. 126(2017), 331-338.
[8] Fält M.: The utilisation of participating gases and long-wave thermal radiation in a passive cooling skylight. PhD thesis. Åbo Akademi, Turku 2016.
[9] Kuczynski P., Białecki R.: Radiation heat transfer model using Monte Carlo ray tracing method on hierarchical ortho-Cartesian meshes and non-uniform rational basis spline surfaces for description of boundaries. Arch. Thermodyn. 35(2014), 2, 65–92.
[10] Hanjalic K., Kenjereš S., Tummers M.J., Jonker H.J.J.: Analysis and Modelling of Physical Transport Phenomena. VSSD, Delft 2009.
[11] Bielinski H., Mikielewicz J.: Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side. Arch. Thermodyn. 31(2010), 4, 51–59.
[12] www.comsol.fi (accessed 20 June 2020).
[13] https://www.ansys.com/products/fluids/ansys-fluent (accessed 20 June 2020).
[14] Finnish Meteorological Institute. Weather and sea / Local weather. https://en.ilmatieteenlaitos.fi/weather/turku (accessed 2 Aug. 2018).
[15] Zevenhoven R., Fält M.: Heat flow control and energy recovery using carbon dioxide in double glass arrangements. In: Proc. ASME 2010 4th Int. Conf. on Energy Sustainability, Volume 2. Phoenix, May 17-22, 2010, 201–206 (ES2010-90189).
[16] Cucumo M., De Rosa A., Marinelli V.: Experimental testing of correlations to calculate the atmospheric “transparency window” emissivity coefficient. Sol. Energy 80(2006), 8, 1031–1038.
[17] Meinel A.B., Meinel M.P.: Applied Solar Energy. An Introduction. Addison- Wesley, 1977.
[18] Opto-Technological Laboratory (LLC Opto-TL). Zinc Sulfide ZnS Cleartran https://optotl.com/upload/pdf_en/zns_cleartnan.pdf (accessed 20 June 2020).
[19] https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node115.htm (accessed 17 Aug. 2020).
[20] Siegel R. Howell J.R.: Thermal Radiation Heattransfer (3rd Edn.). Hemisphere, Washington, DC 1992.

Date

2021.11.09

Type

Article

Identifier

DOI: 10.24425/ather.2021.138108

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×