Details
Title
Determining steam condensation pressure in a power plant condenser in off-design conditionsJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 3Affiliation
Laskowski, Rafał : Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland ; Smyk, Adam : Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland ; Ruciński, Adam : Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland ; Szymczyk, Jacek : Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, PolandAuthors
Keywords
Thermal power plant ; Steam condenser ; Condenser model ; Steam condensation pressure ; Reference parameters ; Steam condenser effectivenessDivisions of PAS
Nauki TechniczneCoverage
45-62Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Salij A., Stepien J.C.: Performance of Turbine Condensers in Power Units of Thermal Systems. Kaprint, Warsaw 2013 (in Polish).[2] Rusowicz A.: Issues Concerning Mathematical Modelling of Power Condensers. Warsaw University of Technology, Warsaw 2013 (in Polish).
[3] Grzebielec A., Rusowicz A.: Thermal resistance of steam condensation in horizontal tube bundles. J. Power Technol. 91(2011), 1, 41–48.
[4] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: Selection of cooling water mass flow rate at variable load for 200 MW power unit. Rynek Energii (2020), 3,41– 46 (in Polish).
[5] Durmayaz A., Sogut O. S.: In?uence of cooling water temperature on the e?ciency of a pressurized-water reactor nuclear-power plant. Int. J. Energ. Res. 30(2006), 10, 799–810.
[6] Atria S.I.: The influence of condenser cooling water temperature on the thermal efficiency of a nuclear power plant. Ann. Nucl. Energy 80(2015), 371–378.
[7] Lakovic M.S., et.al. Stojiljkovic M.M. , Lakovic S.V., Stefanovic V.P., Mitrovic D.D.: Impact of the cold end operating conditions on energy efficiency of the steam power plants. Therm. Sci. 14(2010), Suppl., S53–S66.
[8] Laskowski R., Smyk A., Lewandowski J., Rusowicz A.: Cooperation of a steam condenser with a low-pressure part of a steam turbine in off-design conditions. Am. J. Energ. Res. 3(2015), 1, 13–18.
[9] Cengel Y.A.: Heat Transfer. McGraw-Hill, 1998.
[10] Holman J.P.: Heat Transfer. McGraw-Hill, New York 2002.
[11] Weber G.E., Worek W.M.: Development of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 116(1994), 2, 434–441.
[12] Weber G.E., Worek W.M.: The application of a method to evaluate the design performance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power 117(1995), 2, 384–387.
[13] Szkłowier G.G., Milman O.O.: Research and Calculations of Condensing Systems of Steam Turbines. Energoatomizdat, Moskwa 1985 (in Russian).
[14] Pattanayak L., Padhi B.N., Kodamasingh B.: Thermal performance assessment of steam surface condenser. Case Stud. Therm. Eng. 14(2019), 100484.
[15] Beckman G., Heil G.: Mathematische Modelle für die Beurteilung von Kraftwerksprozessen. EKM Mitteillungen (1965), 10.
[16] Laskowski R., Lewandowski J.: Simplified and approximated relations of heat transfer effectiveness for a steam condenser. J. Power Technol. 92(2012), 4, 258– 265.
[17] Laskowski R.M.: A mathematical model of the steam condenser in the changed conditions. J. Power Technol. 92(2012), 2, 101–108.
[18] Szapajko G., Rusinowski H.: Empirical modelling of heat exchangers in a CHP plant with bleed-condensing turbine. Arch. Thermodyn. 29(2008), 4, 177–184.
[19] Szapajko G., Rusinowski H.: Mathematical modelling of steam–water cycle with auxiliary empirical functions application. Arch. Thermodyn. 31(2010), 2, 165–183.
[20] Bahadori A.: Simple method for estimation of effectiveness in one tube pass and one shell pass counter-flow heat exchangers. Appl. Energ. 88(2011), 11, 4191–4196.
[21] Vera-García F., García-Cascales J.R., Gonzálvez-Maciá J., Cabello R., Llopis R., Sanchez D., Torrella E.: A simplified model for shell-and-tubes heat exchangers: practical application. Appl. Therm. Eng. 30(2010), 10, 1231–1241.
[22] Patrascioiu C., Radulescu S.: Modeling and simulation of the double tube heat exchanger. Case studies. Advances in Fluid Mechanics & Heat & Mass Transfer (P. Mastny, V. Perminov, Eds.). In: Proc. 10th WSEAS Int. Conf. on Heat Transfer, Thermal Engineering and Environment (HTE ’12) and Proc. 10th WSEAS Int. Conf. on Fluid Mechanics & Aerodynamics (FMA ’12), Istanbul, Aug. 21–23, 2012, WSEAS, 2012, 35–41.
[23] Patrascioiu C., Radulescu S.: Prediction of the outlet temperatures in triple concentric-tube heat exchangers in laminar flow regime: case study. Heat Mass Transfer 51(2015), 59–66.
[24] Laskowski R.: The black box model of a double-tube counter-flow heat exchanger. Heat Mass Transfer (2014), 10.1007/s00231-014-1482-2.
[25] Chmielniak T., Trela M., Eds.: Diagnostics of New-Generation Thermal Power Plants. Wyd. IMP PAN, Gdansk 2008.
[26] Butrymowicz D., Trela M.: Influence of fouling and inert gases on the performance of regenerative feedwater heaters. Arch. Thermodyn. 23(2002), 1-2, 127–140.
[27] Badur J., Kowalczyk T., Ziółkowski P., Tokarczyk P., Wozniak M.: Study of the effectiveness of the turbine condenser air extraction system using hydro ejectors. Trans. Inst. Fluid-Flow Mach. 131(2016), 41–53.
[28] Tokarczyk P.,Woznizk M., Badur J., Kowalczyk T., Ziółkowski P.: Issue of the temperature of water supplied to hydro ejector and its influence on performance of steam turbine condenser. Energetyka 70(2017), 10 (in Polish).
[29] HEI Standards for Steam Surface Condensers (11th Edn.). Heat Exchange Institute, Cleveland 2012.
[30] Prieto M.M., Suárez I.M., Montanés E.: Analysis of the thermal performance of a church window steam condenser for different operational conditions using three models. Appl. Therm. Eng. 23(2003), 2, 163–178.
[31] Wróblewski W., Dykas S., Rulik S.: Selection of the cooling system configuration for an ultra-critical coal-fired power plant. Energ. Convers. Manage. 76(2013), 554– 560.
[32] Jian-qun Xu, Tao Yang, You-yuan Sun, Ke-yi Zhou, Yong-feng Shi: Research on varying condition characteristic of feedwater heater considering liquid level. Appl. Therm. Eng., 67 (2014), 179–189.
[33] Laskowski R.: Relations for steam power plant condenser performance in off-design conditions in the function of inlet parameters and those relevant in reference conditions. Appl. Therm. Eng. 104(2016), 528–536.
[34] Laskowski R., Smyk A., Rusowicz A., Grzebielec A.: A useful formulas to describe the performance of a steam condenser in off-design conditions. Energy 204(2020) 117910.
[35] Wagner W., Kretzschmar H.J.: International Steam Tables – Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. Springer, 2008.
Date
2021.11.09Type
ArticleIdentifier
DOI: 10.24425/ather.2021.138109Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China