Details

Title

An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis

Journal title

Archives of Thermodynamics

Yearbook

2021

Volume

vol. 42

Issue

No 3

Affiliation

Ghritlahre, Harish Kumar : Department of Energy and Environmental Engineering, Chhattisgarh Swami Vivekanand Technical University, Bhilai, Chhattisgarh, 491107, India

Authors

Keywords

Artificial roughness ; Arc shaped geometry ; Energy analysis ; Exergy analysis ; Solar air heater

Divisions of PAS

Nauki Techniczne

Coverage

115-139

Publisher

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliography

[1] Duffie J.A., Beckman W.A.: Solar Engineering of Thermal Processes (3rd Edn.). Wiley, New York 2006.
[2] Garg H.P., Prakash J.: Solar Energy Fundamentals and Applications. Tata Mc- Graw Hill, New Delhi 2006.
[3] Ghritlahre H.K.: Performance Evaluation of solar air heating systems using artificial neural network. PhD thesis, National Institute of Technology, Jamshedpur 2019.
[4] Ghritlahre H.K., Chandrakar P., Ahmad A.: A comprehensive review on performance prediction of solar air heaters using artificial neural network. Ann. Data Sci. 8(2019), 405–449).
[5] Prakash C., Saini R.P.: Use of artificial roughness for performance enhancement of solar air heaters – a review. Int. J. Green Energy 16(2019), 7, 551–572.
[6] Ghritlahre H.K., Sahu P.K., Chand S.: Thermal performance and heat transfer analysis of arc shaped roughened solar air heater – An experimental study. Sol. Energy 199(2020), 173–182.
[7] Ghritlahre HK, Prasad RK.: Exergetic performance prediction of a roughened solar air heater using artificial neural network. Strojniški vestnik/J. Mech. Eng. 64(2018), 3, 195–206.
[8] Ghritlahre H.K., Prasad R.K.: Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique. J. Environ. Manage. 223(2018), 566–575.
[9] Ghritlahre H.K., Prasad R.K.: Prediction of exergetic efficiency of artificial arc shape roughened solar air heater using ANN model. Int. J. Heat Technol. 36(2018), 3, 1107–1115.
[10] Kurtbas I., Durmus A.: Efficiency and exergy analysis of a new solar air heater. Renew. Energ. 29(2004), 9, 1489–1501.
[11] Kurtbas I, Turgut E.: Experimental investigation of solar air heater with free and fixed fins: Efficiency and exergy loss. Int. J. Sci. Technol. 1(2006), 1, 75–82.
[12] Karsli S.: Performance analysis of new-design solar air collectors for drying applications. Renew. Energ. 32(2007), 10, 1645–1660.
[13] Esen H.: Experimental energy and exergy analysis of a double-flow solar air heater having different obstacles on absorber plates. Build. Environ. 43(2008), 6, 1046–1054.
[14] Gupta M.K., Kaushik S.C.: Exergetic performance evaluation and parametric studies of solar air heater. Energy 33(2008), 11, 1691–1702.
[15] Gupta M.K., Kaushik S.C.: Performance evaluation of solar air heater for various artificial roughness geometries based on energy, effective and exergy efficiencies. Renew. Energ. 34(2009), 3, 465–476.
[16] Akpinar E.K., Koçyigit F.: Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates. Appl. Energ. 87(2010), 11, 3438–3450.
[17] Alta D., Bilgili E., Ertekin C., Yaldiz O.: Experimental investigation of three different solar air heaters: energy and exergy analyses. Appl. Energ. 87(2010), 10, 2953–2973.
[18] Bouadila S., Kooli S., Lazaar M., Skouri S., Farhat A.: Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl. Energ. 110(2013), 267–275.
[19] Benli H.: Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renew. Energ. 50(2013), 58–67.
[20] Bayrak F., Oztop H.F., Hepbasli A.: Energy and exergy analyses of porous baffles inserted solar air heaters for building applications. Energ. Buildings 57(2013), 338–345.
[21] Velmurugana P., Kalaivanan R.: Energy and exergy analysis of multi-pass flat plate solar air heater – An analytical approach. Int. J. Green Energy 12(2015), 8, 810–820.
[22] Acır A., Ata I., Sahin I.: Energy and exergy analyses of a new solar air heater with circular-type turbulators having different relief angles. Int. J. Exergy 20(2016), 1, 85–104.
[23] Ghritlahre H.K., Prasad R.K.: Energetic and exergetic performance prediction of roughened solar air heater using artificial neural network. Cienc. Tec. Vitivinic. 32(2017), 11, 2–24
[24] Abuska M.: Energy and exergy analysis of solar air heater having new design absorber plate with conical surface. Appl. Therm. Eng. 131(2018), 115–124.
[25] Matheswaran M.M., Arjunan T.V., Somasundaram D.: Analytical investigation of solar air heater with jet impingement using energy and exergy analysis. Sol. Energy 161(2018), 25–37.
[26] Aktas M. Sevik S., Dolgun E.C., Demirci B.: Drying of grape pomace with a double pass solar collector. Dry. Technol. 37(2019), 1, 105–117.
[27] Aktas M., Sözen A., Tuncer A.D., Arslan E., Kosan M., Çürük O.: Energyexergy analysis of a novel multi-pass solar air collector with perforated fins. Int. J. Renew. Energ. Dev. 8(2019), 1, 47–55.
[28] Kumar A., Layek A.: Energetic and exergetic performance evaluation of solar air heater with twisted rib roughness on absorber plate. J. Clean. Prod. 232(2019), 617– 628.
[29] Ural T.: Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses. Energy 188(2019), 116116.
[30] Abdelkader T.K., Zhang Y., Gaballah E.S., Wang S., Wan Q., Fan Q.: Energy and exergy analysis of a flat-plate solar air heater coated with carbon nanotubes and cupric oxide nanoparticles embedded in black paint. J. Clean. Prod. 250(2020), 19501.
[31] Dheep G.R., Sreekumar A.: Experimental studies on energy and exergy analysis of a single pass parallel flow solar air heater. J. Sol. Energy Eng. 142(2020), 1, 011003 SOL-19-1038 .
[32] Debnath S., Das B., Randive P.: Energy and exergy analysis of plain and corrugated solar air collector: effect of seasonal variation. Int. J. Amb. Energ. (2020), doi: 10.1080/01430750.2020.1778081.
[33] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Application of ANN model to predict the performance of solar air heater using relevant input parameters. Sustain. Energ. Technol. Asses. 40(2020), 100764.
[34] Ghritlahre H.K.: Heat transfer and friction factor characteristics investigation of roughened solar air heater using arc shaped wire rib roughness. Int. J. Amb. Energ. (2021), doi: 10.1080/01430750.2021.1934115.
[35] Ghritlahre H.K., Verma M.: Accurate prediction of exergetic efficiency of solar air heaters using various predicting methods. J. Clean. Prod. 288(2021), 125115.
[36] Kline S.J„ McClintock F.A.: Describe uncertainties in single sample experiments. Mech. Eng. 75(1953), 1, 3–8.
[37] Holman J.P.: Experimental Methods for Engineers. McGraw-Hill, New York 2007.
[38] Petela R.: An approach to the exergy analysis of photosynthesis. Sol. Energy, 82(2008), 4, 311–328.
[39] Ghritlahre H.K., Sahu P.K.: A comprehensive review on energy and exergy analysis of solar air heaters. Arch. Thermodyn. 41(2020), 3, 183–222.
[40] Ghritlahre H.K„ Chandrakar P., Ahmad A.: Solar air heater performance prediction using artificial neural network technique with relevant input variables. Arch. Thermodyn. 41(2020), 3, 255–282.

Date

2021.11.09

Type

Article

Identifier

DOI: 10.24425/ather.2021.138112

Editorial Board

International Advisory Board

J. Bataille, Ecole Central de Lyon, Ecully, France

A. Bejan, Duke University, Durham, USA

W. Blasiak, Royal Institute of Technology, Stockholm, Sweden

G. P. Celata, ENEA, Rome, Italy

L.M. Cheng, Zhejiang University, Hangzhou, China

M. Colaco, Federal University of Rio de Janeiro, Brazil

J. M. Delhaye, CEA, Grenoble, France

M. Giot, Université Catholique de Louvain, Belgium

K. Hooman, University of Queensland, Australia

D. Jackson, University of Manchester, UK

D.F. Li, Kunming University of Science and Technology, Kunming, China

K. Kuwagi, Okayama University of Science, Japan

J. P. Meyer, University of Pretoria, South Africa

S. Michaelides, Texas Christian University, Fort Worth Texas, USA

M. Moran, Ohio State University, Columbus, USA

W. Muschik, Technische Universität Berlin, Germany

I. Müller, Technische Universität Berlin, Germany

H. Nakayama, Japanese Atomic Energy Agency, Japan

A. Nenarokomov, Moscow Aviation Institute, Russia

S. Nizetic, University of Split, Croatia

H. Orlande, Federal University of Rio de Janeiro, Brazil

M. Podowski, Rensselaer Polytechnic Institute, Troy, USA

A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine

M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

A. Vallati, Sapienza University of Rome, Italy

H.R. Yang, Tsinghua University, Beijing, China



×