Diffusive–inertial droplet separation model from two-phase flow

Journal title

Archives of Thermodynamics




vol. 42


No 3


Mikielewicz, Jarosław : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland ; Dolna, Oktawia : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland ; Kwidziński, Roman : Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland



two-phase flow ; Diffusive-inertial droplet separation ; Stopping distance

Divisions of PAS

Nauki Techniczne




The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences


[1] Sedler B., Mikielewicz J.: A simplified analytical flow-boiling crisis mode. Trans. Inst. Fluid-Flow Mach. 76(1978), 3–10 (in Polish).
[2] Walley P., Hutchinson P., Hewitt G.F.: The calculation of critical heat flux in forced convection boiling. In: Proc. 5th Int. Heat Transfer Conf., Vol. II, Tokyo 1974.
[3] Kubski P., Mikielewicz J.: Approximated analysis of the drag force of the droplet evaporating within the fluid flow. Trans. Inst. Fluid-Flow Mach. 81(1981), 53–66 (in Polish).
[4] Mikielewicz J.: A simplified analysis of Magnus lift force impact on a small droplets separation from the two-phase flow. Trans. Inst. Fluid-Flow Mach. 75(1978), 63–71 (in Polish).
[5] Ranhiainen P.O., Stachiewicz J.W.: On the deposition of small particles from turbulent streams. J. Heat Transfer. 92(1970), 1, 169–177.
[6] Dolna O., Mikielewicz J.: Separation of droplets in the field of a boundary layer. J. Eng. Phys. Thermophys. 92(2019), 5, 1202–1206.
[7] Pourhashem H., Owen M.P., Castro N.D., Rostami A.A.: Eulerian modeling of aerosol transport and deposition in respiratory tract under thermodynamic equilibrium condition. J. Aerosol Sci. 141(2020), 105501.
[8] Worth Longest P., Xi J.: Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J. Aerosol Sci. 38(2007), l, 111–130.
[9] Wang Y., Yu Y., Hu D., Xu D., Yi L., Zhang Y., Zhang S.: Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators. Chem. Eng. Process. – Process Intensific. 151(2020), 107844.
[10] Ganic E.N., Rohsenow W.M.: Dispersed flow heat transfer. Int. J. Heat Mass Tran. 20(1977), 8, 855-866.
[11] Beek W.J., Muttzal K.M.: Transport Phenomena. Wiley 1975.
[12] Hutchinson P., Hewitt G.F., Ducler A.E.: Deposition of liquid or solid dispersions from turbulent gas stream: a stochastic model. Chem. Eng. Sci. 26(1971), 3, 419–439.
[13] Farmer R.A., Griffith P., Rohsenow W.M.: Liquid droplet deposition in twophase flow. J. Heat Transfer 92(1970), 4, 587–594.
[14] Forney L.J., Spielman L.A.: Deposition of coarse aerosols from turbulent flow. J. Aerosol Sci. 5(1974), 3, 257–271.
[15] Friedlander S.K., Johnstone H.F.: Deposition of suspended particles from turbulent gas streams. Ind. Eng. Chem. 49(1957), 7, 1151–1156.
[16] Ilori T.A.: Turbulent deposition of particles inside pipes. PhD thesis, Univ. Minnesota, Minneapolis – Saint Paul 1971.
[17] Sehmel G.A.: Aerosol deposition from turbulent airstreams in vertical conduits. Pacific Northwest Lab. Tech. Rep. BNWL-578, Richland 1968.
[18] McCoy D.D., Hanratty T.J.: Rate of deposition of droplets in annular two-phase flow. Int. J. Multiphas. Flow 3(1977), 4, 319–331.






DOI: 10.24425/ather.2021.138113

Open Access Policy

For articles published in Archives of Thermodynamics, the authors transfer copyright to publisher.

The Archives of Thermodynamics is published in formula: Open Access Gratis.