Details
Title
Numerical investigation of biomass fast pyrolysis in a free fall reactorJournal title
Archives of ThermodynamicsYearbook
2021Volume
vol. 42Issue
No 3Authors
Affiliation
Bieniek, Artur : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland ; Jerzak, Wojciech : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland ; Magdziarz, Aneta : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, PolandKeywords
Fast pyrolysis ; biomass ; Euler–Lagrange ; Drop tube reactor ; Heating timeDivisions of PAS
Nauki TechniczneCoverage
173-196Publisher
The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of SciencesBibliography
[1] Global Bioenergy Statistics 2019. World Biomass Association. http://www.worldbio energy.org (accessed 1 March 2021).[2] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier, 2013.
[3] Tripathi M., Sahu J.N., Ganesan P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev. 55(2016), 467–481.
[4] Lu J.S., Chang Y., Poon C.S., Lee D.J.: Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technol. 312(2020), 123615.
[5] Bridgwater A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38(2012), 68–94.
[6] Al Arni S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energ. 123(2018), 197–201.
[7] Ronsse F., Hecke S. van, Dickinson D., Prins W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2013), 2, 104–115.
[8] Zabski J, Lampart P, Gumkowski S.: Biomass drying: Experimental and numerical investigations. Arch. Thermodyn. 39(2018), 1, 39–73.
[9] Eri Q., Peng J., Zhao X.: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model. Appl. Therm. Eng. 129(2018), 1358–1368.
[10] Xue Q., Dalluge D., Heindel T.J., Fox R.O., Brown R.C.: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97(2012), 757–769.
[11] Lu L., Gao X., Shahnam M., Rogers W.A.: Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM. Chem. Eng. Sci. 216(2020), 115471.
[12] Liu B., Papadikis K., Gu S., Fidalgo B., Longhurst P., Li Z., Kolios A.: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Process. Technol. 164(2017), 51–68.
[13] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł.: A comprehensive three-dimensional analysis of a large-scale multi-fuel cfb boiler burning coal and syngas. Part 1. The CFD model of a large-scale multi-fuel CFB combustion. Entropy 22(2020), 9, 1–32, 964.
[14] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł: A comprehensive, three-dimensional analysis of a large-scale, multi-fuel, CFB boiler burning coal and syngas. Part 2. Numerical simulations of coal and syngas cocombustion. Entropy, 22(2020), 8, 1–30, 856.
[15] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3, 3–26.
[16] Kaczor Z., Bulinski Z., Werle S.: Modelling approaches to waste biomass pyrolysis: a review. Renew. Energ. 159(2020), 427–443.
[17] Xue Q., Heindel T.J., Fox R.O.: A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 66(2011), 11, 2440–2452.
[18] Yu X., Makkawi Y., Ocone R., Huard M., Briens C., Berruti F.: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas–solid separator – I: Hydrodynamic performance. Fuel Process. Technol. 126(2014), 366–382.
[19] Mellin P., Zhang Q., Kantarelis E., Yang W.: An Euler–Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase. Appl. Therm. Eng. 58(2013), 1-2, 344–353.
[20] Qi F., Wright M.M.: A DEM modeling of biomass fast pyrolysis in a double auger reactor. Int. J. Heat Mass Tran. 150(2020), 119308.
[21] Kardas D., Hercel P., Polesek-Karczewska S., Wardach-Swiecicka I.: A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate. Energy 189(2019), 116159.
[22] Wijaya W.Y., Kawasaki S., Watanabe H., Okazaki K.: Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl. Energ. 94(2012), 141–147.
[23] Bidabadi M., Haghiri A., Rahbari A.: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int. J. Therm. Sci. 49(2010), 3, 534–542.
[24] Ansarifar H., Shams M.: Numerical simulation of hydrogen production by gasification of large biomass particles in high temperature fluidized bed reactor. Int. J. Hydrogen Energ. 43(2018), 10, 5314–5330.
[25] Nugraha M.G., Saptoadi H., Hidayat M., Andersson B., Andersson R.: Particle modelling in biomass combustion using orthogonal collocation. Appl. Energ. 255(2019), 113868.
[26] Wickramaarachchi W.A.M.K.P., Narayana M.: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energ. 146(2020), 1153–1165.
[27] Wardach-Swiecicka I., Kardas D.: Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 2(2013), 2, 53–71.
[28] Gable P., Brown R.C.: Effect of biomass heating time on bio-oil yields in a free fall fast pyrolysis reactor. Fuel 166(2016), 361–366.
[29] McGee H.A.: Molecular Engineering. McGraw Hill, New York 1991.
[30] Kuo K.K.: Principles of Combustion. Wiley, New York 1986.
[31] Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Sym. Ser. 62(1966), 100–111.
[32] Ranz W.E.: Evaporation from drops: Part II. Chem. Eng. Progr. 48(1952), 173–180.
[33] Ranzi E., Cuoci A., Faravelli T., Frassoldati A., Migliavacca G., Pierucci S., Sommariva S.: Chemical kinetics of biomass pyrolysis. Energ. Fuel. 22(2008), 6, 4292–4300.
[34] Miller R.S, Bellan J.: A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 126(1997), 1-6, 97–137.
[35] White J.E., Catallo W.J., Legendre B.L.: Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 91(2011), 1, 1–33.
[36] Rahimi Borujerdi P., Shotorban B., Mahalingam S., Weise D.R.: Modeling of water evaporation from a shrinking moist biomass slab subject to heating: Arrhenius approach versus equilibrium approach. Int. J. Heat Mass Tran. 145(2019), 118672.
[37] Jin W., Singh K., Zondlo J.: Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(2013), 1, 12–32.
[38] Ansys Fluent 12.0 Theory Guide. https://www.afs.enea.it/project/neptun ius/docs/fluent/html/th/main_pre.htm (accessed 1 March 2021).
[39] Bridgwater A.V., Meier D., Radlein D.: An overview of fast pyrolysis of biomass. Org. Geochem. 30(1999), 12, 1479–1493.
[40] Meier D., Faix O.: State of the art of applied fast pyrolysis of lignocellulosic materials — a review. Bioresource Technol. 68(1999), 1, 71–77.
[41] Mašek O.: Biochar in thermal and thermochemical biorefineries — production of biochar as a coproduct. In: Handbook of Biofuels Production (2nd Edn.), (R. Luque, C. Sze Ki Lin, K. Wilson, J. Clark, Eds.), Woodhead, 2016, 655–671.
[42] Efika C.E., Onwudili J.A., Williams P.T.: Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Waste Manage. 76(2018), 497–506.
[43] Klinger J.L., Westover T.L., Emerson R.M., Williams C.L., Hernandez S., Monson G.D., Ryan J.C.: Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ. 228(2018), 535–545.
Date
2021.11.09Type
ArticleIdentifier
DOI: 10.24425/ather.2021.138115Editorial Board
International Advisory BoardJ. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University, Durham, USA
W. Blasiak, Royal Institute of Technology, Stockholm, Sweden
G. P. Celata, ENEA, Rome, Italy
L.M. Cheng, Zhejiang University, Hangzhou, China
M. Colaco, Federal University of Rio de Janeiro, Brazil
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
K. Hooman, University of Queensland, Australia
D. Jackson, University of Manchester, UK
D.F. Li, Kunming University of Science and Technology, Kunming, China
K. Kuwagi, Okayama University of Science, Japan
J. P. Meyer, University of Pretoria, South Africa
S. Michaelides, Texas Christian University, Fort Worth Texas, USA
M. Moran, Ohio State University, Columbus, USA
W. Muschik, Technische Universität Berlin, Germany
I. Müller, Technische Universität Berlin, Germany
H. Nakayama, Japanese Atomic Energy Agency, Japan
S. Nizetic, University of Split, Croatia
H. Orlande, Federal University of Rio de Janeiro, Brazil
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
A. Rusanov, Institute for Mechanical Engineering Problems NAS, Kharkiv, Ukraine
M. R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA
A. Vallati, Sapienza University of Rome, Italy
H.R. Yang, Tsinghua University, Beijing, China