Szczegóły

Tytuł artykułu

Numerical investigation of biomass fast pyrolysis in a free fall reactor

Tytuł czasopisma

Archives of Thermodynamics

Rocznik

2021

Wolumin

vol. 42

Numer

No 3

Afiliacje

Bieniek, Artur : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland ; Jerzak, Wojciech : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland ; Magdziarz, Aneta : AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland

Autorzy

Słowa kluczowe

Fast pyrolysis ; biomass ; Euler–Lagrange ; Drop tube reactor ; Heating time

Wydział PAN

Nauki Techniczne

Zakres

173-196

Wydawca

The Committee of Thermodynamics and Combustion of the Polish Academy of Sciences and The Institute of Fluid-Flow Machinery Polish Academy of Sciences

Bibliografia

[1] Global Bioenergy Statistics 2019. World Biomass Association. http://www.worldbio energy.org (accessed 1 March 2021).
[2] Basu P.: Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory. Elsevier, 2013.
[3] Tripathi M., Sahu J.N., Ganesan P.: Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev. 55(2016), 467–481.
[4] Lu J.S., Chang Y., Poon C.S., Lee D.J.: Slow pyrolysis of municipal solid waste (MSW): A review. Bioresource Technol. 312(2020), 123615.
[5] Bridgwater A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38(2012), 68–94.
[6] Al Arni S.: Comparison of slow and fast pyrolysis for converting biomass into fuel. Renew. Energ. 123(2018), 197–201.
[7] Ronsse F., Hecke S. van, Dickinson D., Prins W.: Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5(2013), 2, 104–115.
[8] Zabski J, Lampart P, Gumkowski S.: Biomass drying: Experimental and numerical investigations. Arch. Thermodyn. 39(2018), 1, 39–73.
[9] Eri Q., Peng J., Zhao X.: CFD simulation of biomass steam gasification in a fluidized bed based on a multi-composition multi-step kinetic model. Appl. Therm. Eng. 129(2018), 1358–1368.
[10] Xue Q., Dalluge D., Heindel T.J., Fox R.O., Brown R.C.: Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 97(2012), 757–769.
[11] Lu L., Gao X., Shahnam M., Rogers W.A.: Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM. Chem. Eng. Sci. 216(2020), 115471.
[12] Liu B., Papadikis K., Gu S., Fidalgo B., Longhurst P., Li Z., Kolios A.: CFD modelling of particle shrinkage in a fluidized bed for biomass fast pyrolysis with quadrature method of moment. Fuel Process. Technol. 164(2017), 51–68.
[13] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł.: A comprehensive three-dimensional analysis of a large-scale multi-fuel cfb boiler burning coal and syngas. Part 1. The CFD model of a large-scale multi-fuel CFB combustion. Entropy 22(2020), 9, 1–32, 964.
[14] Krzywanski J., Sztekler K., Szubel M., Siwek T., Nowak W., Mika Ł: A comprehensive, three-dimensional analysis of a large-scale, multi-fuel, CFB boiler burning coal and syngas. Part 2. Numerical simulations of coal and syngas cocombustion. Entropy, 22(2020), 8, 1–30, 856.
[15] Badur J., Stajnke M., Ziółkowski P., Józwik P., Bojar Z., Ziółkowski P.J.: Mathematical modeling of hydrogen production performance in thermocatalytic reactor based on the intermetallic phase of Ni3Al. Arch. Thermodyn. 3(2019), 3, 3–26.
[16] Kaczor Z., Bulinski Z., Werle S.: Modelling approaches to waste biomass pyrolysis: a review. Renew. Energ. 159(2020), 427–443.
[17] Xue Q., Heindel T.J., Fox R.O.: A CFD model for biomass fast pyrolysis in fluidized-bed reactors. Chem. Eng. Sci. 66(2011), 11, 2440–2452.
[18] Yu X., Makkawi Y., Ocone R., Huard M., Briens C., Berruti F.: A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas–solid separator – I: Hydrodynamic performance. Fuel Process. Technol. 126(2014), 366–382.
[19] Mellin P., Zhang Q., Kantarelis E., Yang W.: An Euler–Euler approach to modeling biomass fast pyrolysis in fluidized-bed reactors – Focusing on the gas phase. Appl. Therm. Eng. 58(2013), 1-2, 344–353.
[20] Qi F., Wright M.M.: A DEM modeling of biomass fast pyrolysis in a double auger reactor. Int. J. Heat Mass Tran. 150(2020), 119308.
[21] Kardas D., Hercel P., Polesek-Karczewska S., Wardach-Swiecicka I.: A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate. Energy 189(2019), 116159.
[22] Wijaya W.Y., Kawasaki S., Watanabe H., Okazaki K.: Damköhler number as a descriptive parameter in methanol steam reforming and its integration with absorption heat pump system. Appl. Energ. 94(2012), 141–147.
[23] Bidabadi M., Haghiri A., Rahbari A.: The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles. Int. J. Therm. Sci. 49(2010), 3, 534–542.
[24] Ansarifar H., Shams M.: Numerical simulation of hydrogen production by gasification of large biomass particles in high temperature fluidized bed reactor. Int. J. Hydrogen Energ. 43(2018), 10, 5314–5330.
[25] Nugraha M.G., Saptoadi H., Hidayat M., Andersson B., Andersson R.: Particle modelling in biomass combustion using orthogonal collocation. Appl. Energ. 255(2019), 113868.
[26] Wickramaarachchi W.A.M.K.P., Narayana M.: Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energ. 146(2020), 1153–1165.
[27] Wardach-Swiecicka I., Kardas D.: Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 2(2013), 2, 53–71.
[28] Gable P., Brown R.C.: Effect of biomass heating time on bio-oil yields in a free fall fast pyrolysis reactor. Fuel 166(2016), 361–366.
[29] McGee H.A.: Molecular Engineering. McGraw Hill, New York 1991.
[30] Kuo K.K.: Principles of Combustion. Wiley, New York 1986.
[31] Wen C.Y., Yu Y.H.: Mechanics of fluidization. Chem. Eng. Prog. Sym. Ser. 62(1966), 100–111.
[32] Ranz W.E.: Evaporation from drops: Part II. Chem. Eng. Progr. 48(1952), 173–180.
[33] Ranzi E., Cuoci A., Faravelli T., Frassoldati A., Migliavacca G., Pierucci S., Sommariva S.: Chemical kinetics of biomass pyrolysis. Energ. Fuel. 22(2008), 6, 4292–4300.
[34] Miller R.S, Bellan J.: A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. Technol. 126(1997), 1-6, 97–137.
[35] White J.E., Catallo W.J., Legendre B.L.: Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrol. 91(2011), 1, 1–33.
[36] Rahimi Borujerdi P., Shotorban B., Mahalingam S., Weise D.R.: Modeling of water evaporation from a shrinking moist biomass slab subject to heating: Arrhenius approach versus equilibrium approach. Int. J. Heat Mass Tran. 145(2019), 118672.
[37] Jin W., Singh K., Zondlo J.: Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 3(2013), 1, 12–32.
[38] Ansys Fluent 12.0 Theory Guide. https://www.afs.enea.it/project/neptun ius/docs/fluent/html/th/main_pre.htm (accessed 1 March 2021).
[39] Bridgwater A.V., Meier D., Radlein D.: An overview of fast pyrolysis of biomass. Org. Geochem. 30(1999), 12, 1479–1493.
[40] Meier D., Faix O.: State of the art of applied fast pyrolysis of lignocellulosic materials — a review. Bioresource Technol. 68(1999), 1, 71–77.
[41] Mašek O.: Biochar in thermal and thermochemical biorefineries — production of biochar as a coproduct. In: Handbook of Biofuels Production (2nd Edn.), (R. Luque, C. Sze Ki Lin, K. Wilson, J. Clark, Eds.), Woodhead, 2016, 655–671.
[42] Efika C.E., Onwudili J.A., Williams P.T.: Influence of heating rates on the products of high-temperature pyrolysis of waste wood pellets and biomass model compounds. Waste Manage. 76(2018), 497–506.
[43] Klinger J.L., Westover T.L., Emerson R.M., Williams C.L., Hernandez S., Monson G.D., Ryan J.C.: Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ. 228(2018), 535–545.

Data

2021.11.09

Typ

Article

Identyfikator

DOI: 10.24425/ather.2021.138115 ; ISSN 1231-0956 ; eISSN 2083-6023

Polityka Open Access

For articles published in Archives of Thermodynamics, the authors transfer copyright to publisher.

The Archives of Thermodynamics is published in formula: Open Access Gratis.
×