Details

Title

The Lower Limit of Pitch Perception for Pure Tones and Low-Frequency Complex Sounds

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Affiliation

Jurado, Carlos : Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, EC170125, Ecuador ; Larrea, Marcelo : Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, EC170125, Ecuador ; Moore, Brian C.J. : Cambridge Hearing Group, Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, England

Authors

Keywords

pitch ; lower limit ; periodicity analysis

Divisions of PAS

Nauki Techniczne

Coverage

459-469

Publisher

Committee on Acoustics PAS, PAS Institute of Fundamental Technological Research, Polish Acoustical Society

Bibliography

1. Atal B.S. (1972), Automatic speaker recognition based on pitch contours, The Journal of the Acoustical Society of America, 52(6B): 1687–1697, doi: 10.1121/1.1913303.
2. Bernstein J.G., Oxenham A.J. (2005), An autocorrelation model with place dependence to account for the effect of harmonic number on fundamental frequency discrimination, The Journal of the Acoustical Society of America, 117(6): 3816–3831, doi: 10.1121/1.1904268.
3. British Society of Audiology (2018), Recommended Procedure: Pure-tone air-conduction and bone conduction threshold audiometry with and without masking, British Society of Audiology, Reading, UK.
4. Burke S. (1998), Missing values, outliers, robust statistics & non-parametric methods, Valid Analytical Measurement Bulletin, 19: 22–27.
5. Carney L.H., Yin T.C.T. (1988), Temporal coding of resonances by low-frequency auditory nerve fibers: Single-fiber responses and a population model, Journal of Neurophysiology, 60(5): 1653–1677, doi: 10.1152/jn.1988.60.5.1653.
6. de Cheveigné A. (1997), Concurrent vowel identification III: A neural model of harmonic interference cancellation, The Journal of the Acoustical Society of America, 101(5): 2857–2865, doi: 10.1121/1.419480.
7. de Cheveigné A., Pressnitzer D. (2006), The case of the missing delay lines: Synthetic delays obtained by cross-channel phase interaction, The Journal of the Acoustical Society of America, 119(6): 3908–3918, doi: 10.1121/1.2195291.
8. Cullen J.K., Long G.R. (1986), Rate discrimination of high-pass-filtered pulse trains, The Journal of the Acoustical Society of America, 79(1): 114–119, doi: 10.1121/1.393762.
9. Dau T. (2003), The importance of cochlear processing for the formation of auditory brainstem and frequency following responses, The Journal of the Acoustical Society of America, 113(2): 936–950, doi: 10.1121/1.1534833.
10. Drugman T., Huybrechts G., Klimkov, V., Moinet A. (2018), Traditional machine learning for pitch detection, IEEE Signal Processing Letters, 25(11): 1745–1749, doi: 10.1109/LSP.2018.2874155.
11. Drullman R., Festen J.M., Plomp R. (1994), Effect of reducing slow temporal modulations on speech reception, The Journal of the Acoustical Society of America, 95(5): 2670–2680, doi: 10.1121/1.409836.
12. Elliott T.M., Theunissen F.E. (2009), The modulation transfer function for speech intelligibility, PLOS Computational Biology, 5: e1000302, doi: 10.1371/journal.pcbi.1000302.
13. Fastl H. (1983), Fluctuation strength of modulated tones and broadband noise, [in:] Hearing – Physiological Bases and Psychophysics, Klinke R., Hartmann R. [Eds], pp. 282–288, Springer, Berlin, Heidelberg, doi: 10.1007/978-3-642-69257-4_41.
14. Fukushima M., Doyle A.M., Mullarkey M.P., Mishkin M., Averbeck B.B. (2015), Distributed acoustic cues for caller identity in macaque vocalization, Royal Society Open Science, 2(12): 150432, doi: 10.1098/rsos.150432.
15. Gerson A., Goldstein J.L. (1978), Evidence for a general template in central optimal processing for pitch of complex tones, The Journal of the Acoustical Society of America, 63(2): 498–510, doi: 10.1121/1.381750.
16. Glasberg B.R., Moore B.C.J. (1990), Derivation of auditory filter shapes from notched-noise data, Hearing Research, 47(1–2): 103–138, doi: 10.1016/0378-5955(90)90170-t.
17. Guttman N., Pruzansky S. (1962), Lower limits of pitch and musical pitch, Journal of Speech, Language, and Hearing Research, 5(3): 207–214, doi: 10.1044/jshr.0503.207.
18. Han K., Wang D. (2014), Neural networks for supervised pitch tracking in noise, [in:] Proceedings of the International Conference on Acoustic, Speech and Signal Processing (ICASSP), Florence, Italy, pp. 1488–1492, doi: 10.1109/ICASSP.2014.6853845.
19. He C., Trainor L.J. (2009), Finding the pitch of the missing fundamental in infants, Journal of Neuroscience, 29(24): 7718–7722, doi: 10.1523/JNEUROSCI.0157-09.2009.
20. Hoeschele M. (2017), Animal pitch perception: melodies and harmonies, Comparative Cognition and Behavior Reviews, 12: 5–18, doi: 10.3819/CCBR.2017.120002.
21. Hoke M., Ross B., Wickesberg R., Lütkenhöner B. (1984), Weighted averaging – theory and application to electric response audiometry, Electroencephalography and Clinical Neurophysiology, 57(5): 484–489, doi: 10.1016/0013-4694(84)90078-6.
22. ISO-226 (2003), Acoustics – normal equal-loudness contours, International Organization for Standardization, Geneva, Switzerland.
23. Jackson H.M., Moore B.C.J. (2013), The dominant region for the pitch of complex tones with low fundamental frequencies, The Journal of the Acoustical Society of America, 134(2): 1193–1204, doi: 10.1121/1.4812754.
24. Joly O., Baumann S., Poirier C., Patterson R.D., Thiele A., Griffiths T.D. (2014), A perceptual pitch boundary in a non-human primate, Frontiers in Psychology, 5, Article 998, doi: 10.3389/fpsyg.2014.00998.
25. Jurado C., Gallegos P., Gordillo D., Moore B.C.J. (2017), The detailed shapes of equal-loudness-level contours at low frequencies, The Journal of the Acoustical Society of America, 142(6): 3821–3832, doi: 10.1121/1.5018428.
26. Jurado C., Larrea M., Patel H., Marquardt T. (2020), Dependency of threshold and loudness on sound duration at low and infrasonic frequencies, The Journal of the Acoustical Society of America, 148(2): 1030–1038, doi: 10.1121/10.0001760 .
27. Jurado C., Marquardt T. (2016), The effect of the helicotrema on low-frequency loudness perception, The Journal of the Acoustical Society of America, 140(5): 3799–3809, doi: 10.1121/1.4967295.
28. Jurado C., Marquardt T. (2020), Brain’s frequency following responses to low-frequency and infrasound, Archives of Acoustics, 45(2): 313–319, doi: 10.24425/aoa.2020.133151.
29. Jurado C., Moore B.C.J. (2010), Frequency selectivity for frequencies below 100 Hz: Comparisons with mid-frequencies, The Journal of the Acoustical Society of America, 128(6): 3585–3596, doi: 10.1121/1.3504657.
30. Jurado C., Pedersen C.S., Moore B.C.J. (2011), Psychophysical tuning curves for frequencies below 100 Hz, The Journal of the Acoustical Society of America, 129(5): 3166–3180, doi: 10.1121/1.3560535.
31. Kanedera N., Arai T., Hermansky H., Pavel M. (1999), On the relative importance of various components of the modulation spectrum for automatic speech recognition, Speech Communication, 28(1): 43–55, doi: 10.1016/S0167-6393(99)00002-3.
32. Kinsler L.E., Frey A.R., Coppens A.B., Sanders J.V. (1999), Fundamentals of Acoustics, 4th ed., New York: Wiley-VCH.
33. Koumura T., Terashima H., Furukawa S. (2019), Cascaded tuning to amplitude modulation for natural sound recognition, Journal of Neuroscience, 39(28): 5517–5533, doi: 10.1523/JNEUROSCI.2914-18.2019.
34. Krumbholz K., Patterson R.D., Pressnitzer D. (2000), The lower limit of pitch as determined by rate discrimination, The Journal of the Acoustical Society of America, 108(3): 1170–1180, doi: 10.1121/1.1287843.
35. Kühler R., Fedtke T., Hensel J. (2015), Infrasonic and low-frequency insert earphone hearing threshold, The Journal of the Acoustical Society of America, 137(4): EL347–EL353, doi: 10.1121/1.4916795.
36. Logos Foundation (2016), Instrument frequencies and ranges, https://www.logosfoundation.org/kursus/frequen cy_table.html (date last viewed: 05-Oct-20).
37. Marquardt T., Hensel J., Mrowinski D., Scholz G. (2007), Low-frequency characteristics of human and guinea pig cochleae, The Journal of the Acoustical Society of America, 121(6): 3628–3638, doi: 10.1121/1.2722506.
38. Meddis R., O’Mard L. (1997), A unitary model of pitch perception, The Journal of the Acoustical Society of America, 102(3): 1811–1820, doi: 10.1121/1.420088.
39. Mehta A.H., Oxenham A.J. (2020), Effect of lowest harmonic rank on fundamental-frequency difference limens varies with fundamental frequency, The Journal of the Acoustical Society of America, 147(4): 2314– 2322, doi: 10.1121/10.0001092.
40. Mrller H., Pedersen C.S. (2004), Hearing at low and infrasonic frequencies, Noise and Health, 6(23): 37–57.
41. Moore B.C.J. (1982), An Introduction to the Psychology of Hearing, 2nd ed., London: Academic Press.
42. Moore B.C.J. (2008), The role of temporal fine structure processing in pitch perception, masking, and speech perception for normal-hearing and hearingimpaired people, Journal of the Association for Research in Otolaryngology, 9(4): 399–406, doi: 10.1007/s10162-008-0143-x.
43. Moore B.C.J. (2019), The roles of temporal envelope and fine structure information in auditory perception, Acoustical Science and Technology, 40(2): 61–83, doi: 10.1250/ast.40.61.
44. Moore B.C.J., Glasberg B.R., Flanagan H.J., Adams J. (2006), Frequency discrimination of complex tones; assessing the role of component resolvability and temporal fine structure, The Journal of the Acoustical Society of America, 119(1): 480–490, doi: 10.1121/1.2139070.
45. Moore B.C.J., Glasberg B.R., Low K.E., Cope T., Cope W. (2006), Effects of level and frequency on the audibility of partials in inharmonic complex tones, The Journal of the Acoustical Society of America, 120(2): 934–944, doi: 10.1121/1.2216906.
46. Moore B.C.J., Gockel H.E. (2011), Resolvability of components in complex tones and implications for theories of pitch perception, Hearing Research, 276(1–2): 88–97, doi: 10.1016/j.heares.2011.01.003.
47. Moore B.C.J., Hopkins K., Cuthbertson S. (2009), Discrimination of complex tones with unresolved components using temporal fine structure information, The Journal of the Acoustical Society of America, 125(5): 3214–3222, doi: 10.1121/1.3106135.
48. Moore B.C.J., Ohgushi K. (1993), Audibility of partials in inharmonic complex tones, The Journal of the Acoustical Society of America, 93(1): 452–461, doi: 10.1121/1.405625.
49. Moore G.A., Moore B.C.J. (2003), Perception of the low pitch of frequency-shifted complexes, The Journal of the Acoustical Society of America, 113(2): 977– 985, doi: 10.1121/1.1536631.
50. Oxenham A.J. (2008), Pitch perception and auditory stream segregation: implications for hearing loss and cochlear implants, Trends in Amplification, 12(4): 316– 331, doi: 10.1177/1084713808325881.
51. Patterson R.D. (1987), A pulse ribbon model of monaural phase perception, The Journal of the Acoustical Society of America, 82(5): 1560–1586, doi: 10.1121/1.395146.
52. Plomp R. (1964), The ear as a frequency analyzer, The Journal of the Acoustical Society of America, 36(9): 1628–1636, doi: 10.1121/1.1919256.
53. Plomp R. (1967), Pitch of complex tones, The Journal of the Acoustical Society of America, 41(6): 1526–1533, doi: 10.1121/1.1910515.
54. Plomp R. (1983), The role of modulation in hearing, [in:] Hearing – Physiological Bases and Psychophysics, Klinke R., Hartmann R. [Eds], Springer, Berlin, pp. 270–276.
55. Pressnitzer D., Patterson R.D., Krumbholz K. (2001), The lower limit of melodic pitch, The Journal of the Acoustical Society of America, 109(5): 2074–2084, doi: 10.1121/1.1359797.
56. Ritsma R.J. (1962), Existence region of the tonal residue – I, The Journal of the Acoustical Society of America, 34(9A): 1224–1229, doi: 10.1121/1.1918307.
57. Santurette S., Dau T. (2011), The role of temporal fine structure information for the low pitch of highfrequency complex tones, The Journal of the Acoustical Society of America, 129(1): 282–292, doi: 10.1121/1.3518718.
58. Seebeck A. (1841), Observations on some conditions of tone formation [in German: Beobachtungen über einige Bedingungen der Entstehung von Tönen], Annalen der Physik, 129(7): 417–436, doi: 10.1002/andp.18411290702.
59. Shackleton T.M., Carlyon R.P. (1994), The role of resolved and unresolved harmonics in pitch perception and frequency modulation discrimination, The Journal of the Acoustical Society of America, 95(6): 3529–3540, doi: 10.1121/1.409970.
60. Shamma S., Dutta K. (2019), Spectro-temporal templates unify the pitch percepts of resolved and unresolved harmonics, The Journal of the Acoustical Society of America, 145(2): 615–629, doi: 10.1121/1.5088504.
61. Singh N.C., Theunissen F.E. (2003), Modulation spectra of natural sounds and ethological theories of auditory processing, The Journal of the Acoustical Society of America, 114(6): 3394–3411, doi: 10.1121/1.1624067.
62. Spetner N.B., Olsho L.W. (1990), Auditory frequency resolution in human infancy, Child Development, 61(3): 632–652, doi: 10.1111/j.1467-8624.1990.tb02808.x.
63. Terhardt E. (1974), Pitch, consonance, and harmony, The Journal of the Acoustical Society of America, 55(5): 1061–1069, doi: 10.1121/1.1914648.
64. Tichko P., Skoe E. (2017), Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators, Hearing Research, 348: 1–15, doi: 10.1016/j.heares.2017.01.014.
65. Tukey J.W. (1977), Exploratory Data Analysis, Reading, Mass: Addison-Wesley Pub.
66. Varnet L., Ortiz-Barajas M.C., Erra R.G., Gervain J., Lorenzi C. (2017), A cross-linguistic study of speech modulation spectra, The Journal of the Acoustical Society of America, 142(4): 1976–1989, doi: 10.1121/1.5006179.
67. Walker K.M.M., Schnupp J.W.H., Hart-Schnupp S.M.B., King A.J., Bizley J.K. (2009), Pitch discrimination by ferrets for simple and complex sounds, The Journal of the Acoustical Society of America, 126(3): 1321–1335, doi: 10.1121/1.3179676.
68. Warren R.M., Bashford J.A. (1981), Perception of acoustic iterance: Pitch and infrapitch, Perception and Psychophysics, 29(4): 395–402, doi: 10.3758/ BF03207350.
69. Yrttiaho S., Tiitinen H., May P.J.C., Leino S., Alku P. (2008), Cortical sensitivity to periodicity of speech sounds, The Journal of the Acoustical Society of America, 123(4): 2191–2199, doi: 10.1121/1.2888489.

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138138
×