Tytuł artykułu

Sound Field Modelling and Noise Reduction for a Forklift Power Compartment Based on Perfectly Matched Layer and Acoustic Packaging Design

Tytuł czasopisma

Archives of Acoustics




vol. 46


No 3


Zhang, Enlai : School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen, China ; Zhang, Enlai : Chengyi University College, Jimei University, Xiamen, China ; Liu, Zhiqi : Chengyi University College, Jimei University, Xiamen, China ; Zhang, Jingjing : College of Applied Science and Technology, Hainan University, Danzhou, China ; Lin, Jiahe : Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, China


Słowa kluczowe

forklift power compartment ; sound field modelling ; perfectly matched layers ; acoustic packaging design ; noise reduction

Wydział PAN

Nauki Techniczne




Committee on Acoustics PAS, PAS Institute of Fundamental Technological Research, Polish Acoustical Society


1. Bermudez A., Hervella-Nieto L., Prieto A., Rodriguez R. (2014), An optimal perfectly matched layer with unbounded absorbing function for timeharmonic acoustic scattering problems, Journal of Computational Physics, 223(2): 469–488, doi: 10.1016/
2. Bi C.X., Zhang Y., Zhang X.Z., Zhang Y.B. (2018), Stability analysis of inverse time domain boundary element method for near-field acoustic holography, The Journal of the Acoustical Society of America, 143(3): 1308–1317, doi: 10.1121/1.5026024.
3. Cai H,S., Li X.X., Zhang W.B. (2010), Analysis and experimental study on sound absorption and noise reduction performance of some composite materials, Noise and Vibration Control, 4: 54–57, doi: 10.3969/j.issn.1006-1355.2010.04.015.
4. Chen L.H., Schweikert D.G. (1963), Sound radiation from an arbitrary body, The Journal of the Acoustical Society of America, 35(10): 1626–1632, doi: 10.1121/1.1918770.
5. Chen L.L., Liu L.C., Zhao W.C., Chen H.B. (2016), 2D acoustic design sensitivity analysis based on adjoint variable method using different types of boundary elements, Acoustics Australia, 44(2): 343–357, doi: 10.1007/s40857-016-0065-4.
6. Chen L.L., Zhao W.C., Liu C., Chen H.B. (2017), 2D structural acoustic analysis using the FEM/FMBEM with Different Coupled Element Types, Archives of Acoustics, 42(1): 37–48, doi: 10.1515/aoa-2017-0005.
7. Chen L.L., Zhao W.C., Liu C., Chen H.B., Marburg S. (2019), Isogeometric Fast Multipole Boundary Element Method based on Burton-Miller formulation for 3D acoustic problems, Archives of Acoustics, 44(3): 475–492, doi: 10.24425/aoa.2019.129263.
8. Dammak K., Koubaa S., EI Hami A., Walha L., Haddar M. (2019), Numerical modelling of vibroacoustic problem in presence of uncertainty: Application to a vehicle cabin, Applied Acoustics, 144: 113– 123, doi: 10.1016/j.apacoust.2017.06.001.
9. Dogan H., Eisenmenger C., Ochmann M. (2018), A LBIE-RBF solution to the convected wave equation for flow acoustics, Engineering Analysis with Boundary Elements, 92: 196–206, doi: 10.1016/j.enganabound.2017.11.016.
10. Duru K., Kreiss G. (2014), Efficient and stable perfectly matched layer for CEM, Applied Numerical Mathematics, 76: 34–47, doi: 10.1016/j.apnum.2013.09.005.
11. Gao K., Fu S.B., Chung E.T. (2018), A high-order multiscale finite-element method for time-domain acoustic-wave modeling, Journal of Computational Physics, 360: 120–136, doi: 10.1016/
12. Gao R.X., Zhang Y.H., Kennedy D. (2019), Topology optimization of sound absorbing layer for the midfrequency vibration of vibro-acoustic systems, Structural and Multidisciplinary Optimization, 59(5): 1733– 1746, doi: 10.1007/s00158-018-2156-3.
13. Hashimoto N. (2001), Measurement of sound radiation efficiency by the discrete calculation method, Applied Acoustics, 62(4): 429–446, doi: 10.1016/S0003- 682X(00)00025-6.
14. Jang H.W., Ih J.G. (2013), On the instability of time-domain acoustic boundary element method due to the static mode in interior problems, Journal of Sound and Vibration, 332(24): 6463–6471, doi: 10.1016/j.jsv.2013.07.018.
15. Kolber K., Snakowska A., Kozupa M. (2014), The effect of plate discretizationon accuracy of the sound radiation efficiency measurements, Archives of Acoustics, 39(4): 511–518, doi: 10.2478/aoa-2014-0055.
16. Komatisch D., Tromp J. (2003), A perfectly matched layer absorbing boundary condition for the secondorder seismic wave equation, Geophysical Journal International, 154(1):146–153, doi: 10.1046/j.1365- 246X.2003.01950.x.
17. Kozien M.S. (2005), Hybrid method of evaluation of sounds radiated by vibrating surface elements, Journal of Theoretical and Applied Mechanics, 43(1): 119–133.
18. Kozien M.S. (2009), Acoustic intensity vector generated by vibrating set of small areas with random amplitudes, Journal of Theoretical and Applied Mechanics, 47(2): 411–420.
19. Liu X.J., Wu H.J., Jiang W.K. (2017), A boundary element method based on the hierarchical matrices and multipole expansion theory for acoustic problems, International Journal of Computational Methods, 15: 1850009, doi: 10.1142/S0219876218500093.
20. Lock A., Holloway D. (2016), Boundary element modelling of a novel simple enhanced bandwidth schroeder diffuser offering comparable performance to a fractal design, Acoustics Australia, 44(1): 137–147, doi: 10.1007/s40857-016-0049-4.
21. Loeffler C.F., Mansur W.J., Barcelos H.D., Bulcao A. (2015), Solving Helmholtz problems with boundary element method using direct radial basis function interpolation, Engineering Analysis with Boundary Elements, 61: 218–225, doi: 10.1016/j.enganabound.2015.07.013.
22. Mott P.H., Michael R.C., Corsaro R.D. (2002), Acoustic and dynamic mechanical properties of a polyurethane rubber, The Journal of the Acoustical Society of America, 111(4): 1782–1790, doi: 10.1121/1.1459465.
23. Qu W.Z., Fan C.M., Gu Y., Wang F.J. (2019), Analysis of three-dimensional interior acoustic fields by using the localized method of fundamental solutions, Applied Mathematical Modelling, 76: 122–132, doi: 10.1016/j.apm.2019.06.014.
24. Tian W.Y., Yao L.Y., Li L. (2017), A Coupled Smoothed Finite Element-Boundary Element Method for structural-acoustic analysis of shell, Archives of Acoustics, 42(1): 49–59, doi: 10.1515/aoa-2017-0006.
25. Yang H.B. (2013), Low-frequency acoustic absorption mechanism of a viscoelastic layer with resonant cylindrical scatterers, Acta Physica Sinca, 62(15): 223–229, doi: 10.7498/aps.62.154301.
26. Zhang E.L., Hou L., Yang W.P. (2015), Noise source identification and experimental research of engine compartment of a Forklift based on fast independent component analysis and Scan & Paint, Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Vol. 13: Vibration, Acoustics and Wave Propagation, Houston, Texas, USA, November 13–19, 2015, doi: 10.1115/IMECE2015-51380.
27. Zhang E.L., Zhang Q.M., Xiao J.J., Hou L., Guo T. (2018), Acoustic comfort evaluation modeling and improvement test of a forklift based on rank score comparison and multiple linear regression, Applied Acoustics, 135: 29–36, doi: 10.1016/j.apacoust.2018.01.026.
28. Zhang E.L., Zhuo J.M., Hou L., Fu C.H., Guo T. (2021), Comprehensive annoyance modeling of forklift sound quality based on rank score comparison and multi-fuzzy analytic hierarchy process, Applied Acoustics, 173: 107705, doi: 10.1016/j.apacoust.2020.107705






DOI: 10.24425/aoa.2021.138141 ; ISSN 0137-5075 ; eISSN 2300-262X