Details

Title

Influence of the Plaster Physical Structure on Indoor Acoustics

Journal title

Archives of Acoustics

Yearbook

2021

Volume

vol. 46

Issue

No 3

Authors

Affiliation

Prędka, Edyta : Department of Electrical and Computer Engineering Fundamentals, Technical University of Rzeszow, Rzeszów, Poland ; Brański, Adam : Department of Electrical and Computer Engineering Fundamentals, Technical University of Rzeszow, Rzeszów, Poland ; Wierzbińska, Małgorzata : Department of Materials Science, Technical University of Rzeszow, Rzeszów, Poland

Keywords

plaster ; aeration ; sound absorption coefficient ; acoustic impedance ; architectural acoustics

Divisions of PAS

Nauki Techniczne

Coverage

539-545

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Bibliography

1. Bonfiglio P., Pompoli F. (2007), Acoustical and physical characterization of a new porous absorbing plaster, ICA, 19-th International Congress on Acoustics, Madrid, 2–7 September 2007.
2. Branski A. (2013), Numerical methods to the solution of boundary problems, classification and survey [in Polish], Rzeszow University of Technology Press, Rzeszow.
3. Branski A., Kocan-Krawczyk A., Predka E. (2017), An influence of the wall acoustic impedance on the room acoustics. The exact solution, Archives of Acoustics, 42(4): 677–687, doi: 10.1515/aoa-2017-0070.
4. Branski A., Predka E. (2018), Nonsingular meshless method in an acoustic indoor problem, Archives of Acoustics, 43(1): 75–82, doi: 10.24425/118082.
5. Branski A., Predka E., Wierzbinska M., Hordij P. (2013), Influence of the plaster physical structure on its acoustic properties, 60th Open Seminar on Acoustics, Rzeszów–Polanczyk (abstract: Archives of Acoustics, 38(3): 437–437).
6. Chen L., Zhao W., Liu C., Chen H., Marburg S. (2019), Isogeometric fast multipole boundary element method based on Burton-Miller formulation for 3D acoustic problems, Archives of Acoustics, 44(3): 475– 492, doi: 10.24425/aoa.2019.129263.
7. Chen L., Li X. (2020), An efficient meshless boundary point interpolation method for acoustic radiation and scattering, Computers & Structures, 229: 106182, doi: 10.1016/j.compstruc.2019.106182.
8. Cucharero J., Hänninen T., Lokki T. (2019), Influence of sound-absorbing material placement on room acoustical parameters, Acoustics, 1(3): 644–660; doi: 10.3390/acoustics1030038.
9. ISO 10354-2:1998 (1998), Acoustics – determination of sound absorption coefficient in impedance tube. Part 2: Transfer-function method.
10. Kulhav P., Samkov A., Petru M., Pechociakova M. (2018), Improvement of the acoustic attenuation of plaster composites by the addition of shortfibre reinforcement, Advances in Materials Science and Engineering, 2018: Article ID 7356721, 15 pages, doi: 10.1155/2018/7356721.
11. Li W., Zhang Q., Gui Q., Chai Y. (2020), A coupled FE-Meshfree triangular element for acoustic radiation problems, International Journal of Computational Methods, 18(3): 2041002, doi: 10.1142/S0219876220410029.
12. McLachlan N.W. (1955), Bessel Functions for Engineers, Clarendon Press, Oxford.
13. Meissner M. (2012), Acoustic energy density distribution and sound intensity vector field inside coupled spaces, The Journal of the Acoustical Society of America, 132(1): 228−238, doi: 10.1121/1.4726030.
14. Meissner M. (2013), Analytical and numerical study of acoustic intensity field in irregularly shaped room, Applied Acoustics, 74(5): 661–668, doi: 10.1016/j.apacoust.2012.11.009.
15. Meissner M. (2016), Improving acoustics of hardwalled rectangular room by ceiling treatment with absorbing material, Progress of Acoustics, Polish Acoustical Society, Warsaw Division, Warszawa, pp. 413–423.
16. Mondet B., Brunskog J., Jeong C.-H., Rindel J.H. (2020), From absorption to impedance: Enhancing boundary conditions in room acoustic simulations, Applied Acoustics, 157: 106884, doi: 10.1016/j.apacoust.2019.04.034.
17. Piechowicz J., Czajka I. (2012), Estimation of acoustic impedance for surfaces delimiting the volume of an enclosed space, Archives of Acoustics, 37(1): 97– 102, doi: 10.2478/v10168-012-0013-8.
18. Piechowicz J., Czajka I. (2013), Determination of acoustic impedance of walls based on acoustic field parameter values measured in the room, Acta Physica Polonica, 123(6): 1068–1071, doi: 10.12693/Aphyspola.123.1068.
19. Predka E., Branski A. (2020), Analysis of the room acoustics with impedance boundary conditions in the full range of acoustic frequencies, Archives of Acoustics, 45(1): 85–92, doi: 10.24425/aoa.2020.132484.
20. Predka E., Kocan-Krawczyk A., Branski A. (2020), Selected aspects of meshless method optimization in the room acoustics with impedance boundary conditions, Archives of Acoustics, 45(4): 647–654, doi: 10.24425/aoa.2020.135252
21. Qu W. (2019), A high accuracy method for longtime evolution of acoustic wave equation, Applied Mathematics Letters, 98: 135–141, doi: 10.1016/j.aml.2019.06.010.
22. Qu W., Fan C.-M., Gu Y., Wang F. (2019), Analysis of three-dimensional interior acoustic field by using the localized method of fundamental solutions, Applied Mathematical Modelling, 76: 122–132, doi: 10.1016/j.apm.2019.06.014.
23. Qu W., He H. (2020), A spatial–temporal GFDM with an additional condition for transient heat conduction analysis of FGMs, Applied Mathematics Letters, 110: 106579, doi: 10.1016/j.aml.2020.106579.
24. Shebl S.S., Seddeq H.S., Aglan H.A. (2011), Effect of micro-silica loading on the mechanical and acoustic properties of cement pastes, Construction and Building Materials, 25(10): 3903–3908, doi: 10.1016/j.conbuildmat.2011.04.021.
25. Stankevicius V., Skripki¯unas G., Grinys A., Miškinis K. (2007), Acoustical characteristics and physical-mechanical properties of plaster with rubber waste additives, Materials Science (Medžiagotyra), 13(4): 304–309.
26. You X., Li W., Chai Y. (2020), A truly meshfree method for solving acoustic problems using local weak form and radial basis functions, Applied Mathematics and Computation, 365: 124694, doi: 10.1016/j.amc.2019.124694.

Date

2021.09.21

Type

Article

Identifier

DOI: 10.24425/aoa.2021.138146
×