Details
Title
Balancing of a linear elastic rotor-bearing system with arbitrarily distributed unbalance using the Numerical Assembly TechniqueJournal title
Bulletin of the Polish Academy of Sciences Technical SciencesYearbook
2021Volume
69Issue
6Authors
Affiliation
Quinz, Georg : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Prem, Marcel S. : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Klanner, Michael : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Ellermann, Katrin : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, AustriaKeywords
Numerical Assembly Technique ; rotor dynamics ; modal balancing ; recursive eigenvalue search algorithmDivisions of PAS
Nauki TechniczneCoverage
e138237Bibliography
- J. Tessarzik, Flexible rotor balancing by the exact point speed influence coefficient method. Latham: Mechanical Technology Incorporated, 1972.
- P. Gnielka, “Modal balancing of flexible rotors without test runs: An experimental investigation,” Journal of Vibrations, vol. 90, no. 2, pp. 152–170, 1982.
- K. Federn, “Grundlagen einer systematischen Schwingungsentstörung wellenelastischer Rotoren,” VDI Bericht, vol. 24, pp. 9‒25, 1957.
- A. G. Parkinson and R. E. D. Bishop, “Residual vibration in modal balancing,” Journal of Mechanical Engineering Science, vol. 7, pp. 33–39, 1965.
- W. Kellenberger, “Das Wuchten elastischer Rotoren auf zwei allgemeinelastischen Lagern,” Brown Boveri Mitteilungen, vol. 54, pp. 603– 617, 1967.
- A.-C. Lee, Y.-P. Shih, and Y. Kang, “The analysis of linear rotor bearing systems: A general Transfer Matrix Method,” Journal of Vibration and Accoustics, vol. 115, no. 4, pp. 490–497, 1993.
- J.-S. Wu and H. M. Chou, “A new approach for determining the natural frequency of mode shapes of a uniform beam carrying any number of sprung masses,” Journal of Sound and Vibration, vol. 220, no. 3, pp. 451–468, 1999.
- J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical solution for whirling speeds and mode shapes of a distributed-mass shaft with arbitrary rigid disks,” Journal of Applied Mechanics, vol. 81, no. 3, pp. 034 503–1–034 503–10, 2014.
- M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor- bearing system with a discontinuous shaft and arbitrarily distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, 2020, pp. 1257–1272.
- M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Applied and Computational Mechanics, vol. 14, no. 1, pp. 31–50, 2019.
- M.B. Deepthikumar, A.S. Sekhar, and M.R. Srikanthan, “Modal balancing of flexible rotors with bow and distributed unbalance,” Journal of Sound and Vibration, vol. 332, pp. 6216‒6233, 2013.
- O.A. Bauchau and J.I. Craig, Structural Analysis – With Applications to Aerospace Structures. Heidelberg: Springer Verlag, 2009.
- R.E.D. Bishop and A.G. Parkinson, “On the isolation of modes in balancing of flexible shafts,” Proc. Inst. Mech. Eng., vol. 117, pp. 407– 426, 1963.
- X. Rui, G. Wang, Y. Lu, and L. Yunm, “Transfer Matrix Method for linear multibody systems,” Multibody Syst. Dyn., vol. 19, pp. 179–207, 2008.
- I.N. Bronstein, K.A. Semendjajew, and E. Zeidler, Taschenbuch der Mathematik. Stuttgard: Teubner, 1996.
- D. Bestle, L. Abbas, and X. Rui, “Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems,” Multibody Syst. Dyn., vol. 32, pp. 429–444, 2013.
- B. Xu and L. Qu, “A new practical modal method for rotor balancing,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 215, pp. 179–190, 2001.
- J. Tessarzik, Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point speed and least squares procedure. Latham: Mechanical Technology Incorporated, 1972.