Details

Title

Balancing of a linear elastic rotor-bearing system with arbitrarily distributed unbalance using the Numerical Assembly Technique

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2021

Volume

69

Issue

6

Authors

Affiliation

Quinz, Georg : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Prem, Marcel S. : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Klanner, Michael : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria ; Ellermann, Katrin : Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria

Keywords

Numerical Assembly Technique ; rotor dynamics ; modal balancing ; recursive eigenvalue search algorithm

Divisions of PAS

Nauki Techniczne

Coverage

e138237

Bibliography

  1.  J. Tessarzik, Flexible rotor balancing by the exact point speed influence coefficient method. Latham: Mechanical Technology Incorporated, 1972.
  2.  P. Gnielka, “Modal balancing of flexible rotors without test runs: An experimental investigation,” Journal of Vibrations, vol. 90, no. 2, pp. 152–170, 1982.
  3.  K. Federn, “Grundlagen einer systematischen Schwingungsentstörung wellenelastischer Rotoren,” VDI Bericht, vol. 24, pp.  9‒25, 1957.
  4.  A. G. Parkinson and R. E. D. Bishop, “Residual vibration in modal balancing,” Journal of Mechanical Engineering Science, vol. 7, pp. 33–39, 1965.
  5.  W. Kellenberger, “Das Wuchten elastischer Rotoren auf zwei allgemeinelastischen Lagern,” Brown Boveri Mitteilungen, vol. 54, pp. 603– 617, 1967.
  6.  A.-C. Lee, Y.-P. Shih, and Y. Kang, “The analysis of linear rotor bearing systems: A general Transfer Matrix Method,” Journal of Vibration and Accoustics, vol. 115, no. 4, pp. 490–497, 1993.
  7.  J.-S. Wu and H. M. Chou, “A new approach for determining the natural frequency of mode shapes of a uniform beam carrying any number of sprung masses,” Journal of Sound and Vibration, vol.  220, no. 3, pp. 451–468, 1999.
  8.  J.-S. Wu, F.-T. Lin, and H.-J. Shaw, “Analytical solution for whirling speeds and mode shapes of a distributed-mass shaft with arbitrary rigid disks,” Journal of Applied Mechanics, vol. 81, no. 3, pp. 034 503–1–034 503–10, 2014.
  9.  M. Klanner, M.S. Prem, and K. Ellermann, “Steady-state harmonic vibrations of a linear rotor- bearing system with a discontinuous shaft and arbitrarily distributed mass unbalance,” in Proceedings of ISMA2020 International Conference on Noise and Vibration Engineering and USD2020 International Conference on Uncertainty in Structural Dynamics, 2020, pp. 1257–1272.
  10.  M. Klanner and K. Ellermann, “Steady-state linear harmonic vibrations of multiple-stepped Euler-Bernoulli beams under arbitrarily distributed loads carrying any number of concentrated elements,” Applied and Computational Mechanics, vol. 14, no. 1, pp. 31–50, 2019.
  11.  M.B. Deepthikumar, A.S. Sekhar, and M.R. Srikanthan, “Modal balancing of flexible rotors with bow and distributed unbalance,” Journal of Sound and Vibration, vol. 332, pp. 6216‒6233, 2013.
  12.  O.A. Bauchau and J.I. Craig, Structural Analysis – With Applications to Aerospace Structures. Heidelberg: Springer Verlag, 2009.
  13.  R.E.D. Bishop and A.G. Parkinson, “On the isolation of modes in balancing of flexible shafts,” Proc. Inst. Mech. Eng., vol. 117, pp. 407– 426, 1963.
  14.  X. Rui, G. Wang, Y. Lu, and L. Yunm, “Transfer Matrix Method for linear multibody systems,” Multibody Syst. Dyn., vol.  19, pp. 179–207, 2008.
  15.  I.N. Bronstein, K.A. Semendjajew, and E. Zeidler, Taschenbuch der Mathematik. Stuttgard: Teubner, 1996.
  16.  D. Bestle, L. Abbas, and X. Rui, “Recursive eigenvalue search algorithm for transfer matrix method of linear flexible multibody systems,” Multibody Syst. Dyn., vol. 32, pp. 429–444, 2013.
  17.  B. Xu and L. Qu, “A new practical modal method for rotor balancing,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 215, pp.  179–190, 2001.
  18.  J. Tessarzik, Flexible rotor balancing by the influence coefficient method. Part 1: Evaluation of the exact point speed and least squares procedure. Latham: Mechanical Technology Incorporated, 1972.

Date

18.08.2021

Type

Article

Identifier

DOI: 10.24425/bpasts.2021.138237
×